• Title/Summary/Keyword: magnetic/hydro separation

Search Result 3, Processing Time 0.017 seconds

The Selection Effect of Native Gold and Magnetite by Microwave-nitric Acid Leaching and Magnetic/hydro Separation (마이크로웨이브-질산용출과자력/수력선별에의한자연금및자철석의선별효과)

  • Lee, Jong-Ju;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.183-196
    • /
    • 2020
  • This study aimed to recover native gold from the concentrate using microwave-nitric acid leaching and magnetic/hydro separation experiments. The insoluble-residue was filtered from leaching solution through microwave-nitric acid leaching experiment. As a result of the atomic absorption spectrometer(AAS) analysis of the filtered leaching solution, it was discovered that Au content was not eluted at all and it was observed from the back scattered electron(BSE) image that native gold was liberated in the insoluble-residue. When magnetic/hydro separation experiments were applied for the insoluble-residue, magnetic and non magnetic minerals were separtated from insoluble-residue. Magnetite was recovered from the magnetic minerals and as a result of applying the hydro separation experiment again for the non-magnetic mineral, native gold was recovered. The native gold was identified through the X-ray diffraction(XRD) analysis and BSE image.

Total value recovery in the copper smelting and refining operations

  • Kim Joe. Y.;Kong Bong S.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.590-597
    • /
    • 2003
  • Processing and smelting of copper containing sulphide concentrates result in the accumulation of impurities into various process streams. All primary copper smelters and refineries around the world produce significant amounts of slag, dust, sludge, residues and others, which contain copper and precious metals. The recovery of these valuable metals is essential to the overall economics of the smelting process. Physical, chemical and mineralogical characterization of particular slag and Cottrell dusts from primary smelters and $Dor\'{e}$ furnace (TBRC) slag and Pressure Leached Anode slimes from a copper refinery have been carried out to understand the basic behind the recovery processes. Various process options have been evaluated and adapted for the treatment of slag from different smelting furnaces and Cottrell dusts as well as the intermediate products from copper refineries. Besides the hydro- or pyro-metallurgical treatments, the above mentioned physical separation options such as magnetic, gravity separation, flotation and precipitation flotation processes have been successfully identified and adapted as the possible process options to produce a Cu-rich or precious metal-rich concentrates for in-house recycling and other valued by-product for further treatment. The results of laboratory, pilot plant and production operations are presented, and incorporation of several alternative flowsheet is discussed in this paper.

  • PDF

MINERAL PROCESSING and COPPER EXRACTIVE METALLURGY Complete Metal Recovery

  • Kim, J.Y.
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.22-34
    • /
    • 2003
  • Processing and smelting of copper containing sulphide concentrates result in the accumulation of impurities into various process streams. All primary copper smelters and refineries around the world produce significant amounts of slag, dust, sludge, residues and others, which contain copper and precious metals. The recovery of these valuable metals is essential to the overall economics of the smelting process. Physical, chemical and mineralogical characterization of particular slag and Cottrell dusts from primary smelters and Dore furnace (TBRC) slag and Pressure Leached Anode slimes from a copper refinery have been carried out to understand the basic behind the recovery processes. Various process options have been evaluated and adapted for the treatment of slag from different smelting furnaces and Cottrell dusts as well as the intermediate products from copper refineries. Besides the hydro- or pyre-metallurgical treatments, the above mentioned physical separation options such as magnetic, gravity separation, flotation and precipitation flotation processes have been successfully identified and adapted as the possible process options to produce a Cu-rich or precious metal-rich concentrates for in-house recycling and other valued by-product for further treatment. The results of laboratory, pilot plant and production operations are presented, and incorporation of several alternative flowsheet is discussed in this paper.

  • PDF