References
- Ackermann HW. Bacteriophage observations and evolution. Res. Microbiol. 154: 245-251 (2003) https://doi.org/10.1016/S0923-2508(03)00067-6
- Brooks JT, Sowers EG, Wells JG, Greene KD, Griffin PM, Hoekstra RM, Strockbine NA. Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983-2002. J. Infect. Dis. 192: 1422-1429 (2005) https://doi.org/10.1086/466536
- de Siqueira R, Dodd C, Rees C. Evaluation of the natural virucidal activity of teas for use in the phage amplification assay. Int. J. Food Microbiol. 111: 259-262 (2006) https://doi.org/10.1016/j.ijfoodmicro.2006.04.047
- Derda R, Lockett MR, Tang SK, Fuller RC, Maxwell EJ, Breiten B, Cuddemi CA, Ozdogan A, Whitesides GM. Filter-based assay for Escherichia coli in aqueous samples using bacteriophage-based amplification. Anal. Chem. 85: 7213-7220 (2013) https://doi.org/10.1021/ac400961b
- Dini C, Urraza PJ. Isolation and selection of coliphages as potential biocontrol agents of enterohemorrhagic and Shiga toxin-producing E. coli (EHEC and STEC) in cattle. J. Appl. Microbiol. 109: 873-887 (2010) https://doi.org/10.1111/j.1365-2672.2010.04714.x
- Elhariry HM. Attachment strength and biofilm forming ability of Bacillus cereus on green-leafy vegetables: cabbage and lettuce. Food microbiol. 28: 1266-1274 (2011) https://doi.org/10.1016/j.fm.2011.05.004
- Favrin SJ, Jassim SA, Griffiths MW. Application of a novel immunomagnetic separation-bacteriophage assay for the detection of Salmonella enteritidis and Escherichia coli O157: H7 in food. Int. J. food microbiol. 85: 63-71 (2003) https://doi.org/10.1016/S0168-1605(02)00483-X
- Garrido-Maestu A, Fucios P, Azinheiro S, Carvalho C, Carvalho J, Prado M. Specific detection of viable Salmonella Enteritidis by phage amplification combined with qPCR (PAA-qPCR) in spiked chicken meat samples. Food control. 99: 79-83 (2019) https://doi.org/10.1016/j.foodcont.2018.12.038
- Gould LH, Mody RK, Ong KL, Clogher P, Cronquist AB, Garman KN, Lathrop S, Medus C, Spina NL, Webb TH. Increased recognition of non-O157 Shiga toxin-producing Escherichia coli infections in the United States during 2000-2010: epidemiologic features and comparison with E. coli O157 infections. Foodborne Pathog. Dis. 10: 453-460 (2013) https://doi.org/10.1089/fpd.2012.1401
- Guglielmotti DM, Mercanti DJ, Reinheimer JA, Quiberoni ADL. Efficiency of physical and chemical treatments on the inactivation of dairy bacteriophages. Front. Microbiol. 2: 282 (2012) https://doi.org/10.3389/fmicb.2011.00282
- Hendrix RW. Bacteriophage genomics. Curr. Opin. Microbiol. 6: 506-511 (2003) https://doi.org/10.1016/j.mib.2003.09.004
- Hughes JM, Wilson ME, Johnson KE, Thorpe CM, Sears CL. The emerging clinical importance of non-O157 Shiga toxin-producing Escherichia coli. Clin. Infect. Dis. 43: 1587-1595 (2006) https://doi.org/10.1086/509573
- Jassim S, Griffiths M. Evaluation of a rapid microbial detection method via phage lytic amplification assay coupled with Live/Dead fluorochromic stains. Lett. Appl. Microbiol. 44: 673-678 (2007) https://doi.org/10.1111/j.1472-765X.2007.02115.x
- Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2: 123-140 (2004) https://doi.org/10.1038/nrmicro818
- Kim EJ, Lee H, Lee JH, Ryu S, Park JH. Morphological features and lipopolysaccharide attachment of coliphages specific to Escherichia coli O157: H7 and to a broad range of E. coli hosts. Appl. Biol. Chem. 59: 109-116 (2016) https://doi.org/10.1007/s13765-015-0130-y
- Law D. Virulence factors of Escherichia coli O157 and other Shiga toxin-producing E. coli. J. Appl. Microbiol. 88: 729-745 (2000) https://doi.org/10.1046/j.1365-2672.2000.01031.x
- Lee YD, Park JH. Characterization and application of phages isolated from sewage for reduction of Escherichia coli O157: H7 in biofilm. LWT-Food Sci. Technol. 60: 571-577 (2015) https://doi.org/10.1016/j.lwt.2014.09.017
- Lienemann T, Kyyhkynen A, Halkilahti J, Haukka K, Siitonen A. Characterization of Salmonella Typhimurium isolates from domestically acquired infections in Finland by phage typing, antimicrobial susceptibility testing, PFGE and MLVA. BMC Microbiol. 15: 131 (2015) https://doi.org/10.1186/s12866-015-0467-8
- Lim GY, Park DW, Lee YD, Park JH. Isolation and characterization of bacteriophages for the control of Shiga Toxin-producing E. coli. Korean J. Food Sci. Technol. 50: 594-600 (2018) https://doi.org/10.9721/KJFST.2018.50.6.594
- Ly-Chatain MH, Moussaoui S, Vera A, Rigobello V, Demarigny Y. Antiviral effect of cationic compounds on bacteriophages. Front. Microbiol. 4: 46 (2013) https://doi.org/10.3389/fmicb.2013.00046
- Majowicz SE, Scallan E, Jones-Bitton A, Sargeant JM, Stapleton J, Angulo FJ, Yeung DH, Kirk MD. Global incidence of human Shiga toxinproducing Escherichia coli infections and deaths: a systematic review and knowledge synthesis. Foodborne Pathog. Dis. 11: 447-455 (2014) https://doi.org/10.1089/fpd.2013.1704
- McNerney R, Wilson S, Sidhu A, Harley Va, Al Suwaidi Z, Nye P, Parish T, Stoker N. Inactivation of mycobacteriophage D29 using ferrous ammonium sulphate as a tool for the detection of viable Mycobacterium smegmatis and M. tuberculosis. Res. Microbiol. 149: 487-495 (1998) https://doi.org/10.1016/S0923-2508(98)80003-X
- Nakao H, Kataoka C, Kiyokawa N, Fujimoto J, Yamasaki S, Takeda T. Monoclonal antibody to Shiga toxin 1, which blocks receptor binding and neutralizes cytotoxicity. Microbiol. immunol. 46: 777-780 (2002) https://doi.org/10.1111/j.1348-0421.2002.tb02764.x
- Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11: 142-201 (1998) https://doi.org/10.1128/CMR.11.1.142
- Oliveira A, Sillankorva S, Quinta R, Henriques A, Sereno R, Azeredo J. Isolation and characterization of bacteriophages for avian pathogenic E. coli strains. J. Appl. Microbiol. 106: 1919-1927 (2009) https://doi.org/10.1111/j.1365-2672.2009.04145.x
- Oliveira I, Almeida RCdC, Hofer E, Almeida PF. Bacteriophage amplification assay for detection of Listeria spp. using virucidal laser treatment. Braz. J. Microbiol. 43: 1128-1136 (2012) https://doi.org/10.1590/S1517-83822012000300040
- Park DJ, Drobniewski F, Meyer A, Wilson S. Use of a phage-based assay for phenotypic detection of mycobacteria directly from sputum. J. Clin. Microbiol. 41: 680-688 (2003) https://doi.org/10.1128/JCM.41.2.680-688.2003
- Park WJ, Lim GY, Park JH. Enumeration of Weissella cibaria phage with cytometry, epifluorescence microscopy, and plaque assay. Korean J. Food Sci. Technol. 50: 244-247 (2018) https://doi.org/10.9721/KJFST.2018.50.2.244
- Patel J, Sharma M. Differences in attachment of Salmonella enterica serovars to cabbage and lettuce leaves. Int. J Food Microbiol. 139: 41-47 (2010) https://doi.org/10.1016/j.ijfoodmicro.2010.02.005
- Raya RR, Varey P, Oot RA, Dyen MR, Callaway TR, Edrington TS, Kutter EM, Brabban AD. Isolation and characterization of a new T-even bacteriophage, CEV1, and determination of its potential to reduce Escherichia coli O157: H7 levels in sheep. Appl. Environ. Microbiol. 72: 6405-6410 (2006) https://doi.org/10.1128/AEM.03011-05
- Smith JL, Fratamico PM, Gunther IV NW. Shiga toxin-producing Escherichia coli. Adv. Appl. Microbiol. 86: 145-197 (2014) https://doi.org/10.1016/B978-0-12-800262-9.00003-2
- Stewart GS, Jassim SA, Denyer SP, Newby P, Linley K, Dhir VK. The specific and sensitive detection of bacterial pathogens within 4 h using bacteriophage amplification. J. Appl. Microbiol. 84: 777-783 (1998) https://doi.org/10.1046/j.1365-2672.1998.00408.x
- Sulakvelidze A, Alavidze Z, Morris JG. Bacteriophage therapy. Antimicrob. Agents. Chemother. 45: 649-659 (2001) https://doi.org/10.1128/AAC.45.3.649-659.2001
- Torres AG, Amaral MM, Bentancor L, Galli L, Goldstein J, Krger A, Rojas-Lopez M. Recent advances in shiga toxin-producing Escherichia coli research in Latin America. Microorganisms 6: 100-118 (2018) https://doi.org/10.3390/microorganisms6040100
- Tzipilevich E, Habusha M, Ben-Yehuda S. Acquisition of phage sensitivity by bacteria through exchange of phage receptors. Cell 168: 186-199 (2017) https://doi.org/10.1016/j.cell.2016.12.003