DOI QR코드

DOI QR Code

Feasibility of Bone Conduction Earphones for Auditory Brain-Computer Interface

청각 기반 뇌-컴퓨터 인터페이스 구현을 위한 골전도 이어폰의 활용 가능성

  • Lee, Ju-Ok (Department of Biomedical Engineering, Chonnam National University) ;
  • Ju, Gyeong-Ho (Department of Biomedical Engineering, Chonnam National University) ;
  • Kim, Do-Won (Department of Biomedical Engineering, Chonnam National University)
  • Received : 2020.01.08
  • Accepted : 2020.01.29
  • Published : 2020.02.29

Abstract

Auditory stimuli are commonly used in various electroencephalogram experiments, also in EEG-based brain-computer interface systems. However, using conventional earphones that blocks the ear canal attenuates or even blocks external environmental sound which might cause loss of crucial information from surroundings. Instead, bone-conductive earphones are able to deliver sound through vibration without blocking the ear canal. To investigate the feasibility of the bone-conductive earphones for auditory-stimuli based experiments, we compared N100 event-related potential features as well the event-related spectral perturbation and inter-trial coherence of auditory steady-state response between conventional and bone-conductive earphones. The results showed no significant differences between bone conduction and conventional earphones regardless of distinct sound pressures. This result shows that bone conductive earphones can be used for auditory experiments when the environmental sound is crucial to the user.

Keywords

References

  1. Olejniczak P. Neurophysiologic basis of EEG. J Clin Neurophysiol. 2006;23(3):186-9. https://doi.org/10.1097/01.wnp.0000220079.61973.6c
  2. Basar E. Dynamics and Evoked Potentials in Sensory and Cognitive Processing by the Brain. Berlin: Springer-Verlag Berlin Heidelberg; 1988.
  3. Elbert T, Rockstroh B. Threshold regulation: A key to the understanding of the combined dynamics of EEG and eventrelated potentials. J Psychophysiol. 1987;1(4):317-33.
  4. Makeig S. Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr Clin Neurophysiol. 1993;86(4):283-93. https://doi.org/10.1016/0013-4694(93)90110-H
  5. Paulraj MP, Subramaniam K, Yaccob SB, Adom AHB, Hema CR. Auditory evoked potential response and hearing loss: a review. Open Biomed Eng J. 2015;9:17-24. https://doi.org/10.2174/1874120701509010017
  6. Boutros NN, Arfken C, Galderisi S, Warrick J, Pratt G, Iacono W. The status of spectral EEG abnormality as a diagnostic test for schizophrenia. Schizophr Res. 2008;99(1):225-37. https://doi.org/10.1016/j.schres.2007.11.020
  7. Kim D-W, Lee S-H, Shim M, Im C-H. Estimation of Symptom Severity Scores for Patients with Schizophrenia Using ERP Source Activations during a Facial Affect Discrimination Task. Front Neurosci. 2017;11(436):1-6.
  8. Schraag S, Bothner U, Gajraj R, Kenny GNC, Georgieff M. The Performance of Electroencephalogram Bispectral Index and Auditory Evoked Potential Index to Predict Loss of Consciousness During Propofol Infusion. Anesth Analg. 1999;89(5):1311-5. https://doi.org/10.1213/00000539-199911000-00045
  9. Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F. A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J Neural Eng. 2018;15(3):1-28.
  10. Lotte F, Congedo M, Lecuyer A, Lamarche F, Arnaldi B. A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng. 2007;4(2):R1-R13. https://doi.org/10.1088/1741-2560/4/2/R01
  11. Wolpaw JR, McFarland DJ, Neat GW, Forneris CA. An EEGbased brain-computer interface for cursor control. Electroencephalogr Clin Neurophysiol. 1991;78(3):252-9. https://doi.org/10.1016/0013-4694(91)90040-B
  12. Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G, Donchin E, Quatrano LA, Robinson CJ, Vaughan TM. Brain-computer interface technology: A review of the first international meeting. IEEE T Rehabil Eng. 2000;8(2):164-73. https://doi.org/10.1109/TRE.2000.847807
  13. Hwang H-J, Kim S, Choi S, Im C-H. EEG-Based Brain-Computer Interfaces: A Thorough Literature Survey. Int J Hum Comput Interact. 2013;29(12):814-26. https://doi.org/10.1080/10447318.2013.780869
  14. Ramadan RA, Vasilakos AV. Brain computer interface: control signals review. Neurocomputing. 2017;223:26-44. https://doi.org/10.1016/j.neucom.2016.10.024
  15. Xing X, Wang Y, Pei W, Guo X, Liu Z, Wang F, Ming G, Zhao H, Gui Q, Chen H. A High-Speed SSVEP-Based BCI Using Dry EEG Electrodes. Sci Rep. 2018;8(1):14708. https://doi.org/10.1038/s41598-018-32283-8
  16. Kim D-W, Hwang H-J, Lim J-H, Lee Y-H, Jung K-Y, Im CH. Classification of selective attention to auditory stimuli: Toward vision-free brain-computer interfacing. Journal of Neuroscience Methods. 2011;197(1):180-5. https://doi.org/10.1016/j.jneumeth.2011.02.007
  17. Schreuder M, Rost T, Tangermann M. Listen, You are Writing! Speeding up Online Spelling with a Dynamic Auditory BCI. Front Neurosci. 2011;5(112):1-12.
  18. Reinfeldt S, Hakansson B, Taghavi H, Eeg-Olofsson M. New developments in bone-conduction hearing implants: a review. Med Devices (Auckl). 2015;8:79-93. https://doi.org/10.2147/MDER.S39691
  19. Vander Werff KR. Accuracy and Time Efficiency of Two ASSR Analysis Methods Using Clinical Test Protocols. J Am Acad Audiol. 2009;20(7):433-52. https://doi.org/10.3766/jaaa.20.7.5
  20. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Meth. 2004;134(1):9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009
  21. Jansen BH, Hegde A, Boutros NN. Contribution of different EEG frequencies to auditory evoked potential abnormalities in schizophrenia. Clin Neurophysiol. 2004;115(3):523-33. https://doi.org/10.1016/j.clinph.2003.10.016