DOI QR코드

DOI QR Code

Development and Mechanical Performance Evaluation of Lumbar Porous Interbody Fusion Cage

요추부 다공성 추간체유합보형재의 개발 및 기계적 성능 평가

  • 안윤호 ((주)지비에스커먼웰스 기술연구소) ;
  • 유경주 ((주)지비에스커먼웰스 기술연구소) ;
  • 박광민 (충북대학교 의용생체공학과) ;
  • 차은종 (충북대학교 의용생체공학과) ;
  • 김경아 (충북대학교 의용생체공학과) ;
  • 안경기 ((주)지비에스커먼웰스 기술연구소)
  • Received : 2019.12.23
  • Accepted : 2020.01.21
  • Published : 2020.02.29

Abstract

Recently, porous additive manufactured(AM) cages have been introduced to provide more desirable stiffness and may be beneficial to bone ingrowth. They are designed to attempt to reduce the subsidence problem of traditional titanium cage and to get osseointegrative property that PEEK doesn't have. This study was performed to evaluate the mechanical performance of newly developed lumbar porous AM cages. Three types of mechanical tests were performed in accordance with the ASTM standards: Static compression, compression-shear, and subsidence tests. The porous AM cages with 60% porosity showed similar device stiffness and strength as the various products submitted to FDA 510(k), and their wider contact area improved the subsidence test results by about 50%. In conclusion, the porous AM cages developed in this study were considered mechanically safe and could be an alternative to solid PEEK cages.

Keywords

References

  1. Lee NY, Oh SH, Rhee WT, Bae HS, Yi HJ, Kim YS, Ko Y, Kim KM, Oh SJ. Posterior lumbar interbody fusion versus $360^{\circ}$ fixation in degenerative lumbar disease. J Korean Neurosurg Soc. 2001;30:1193-9.
  2. He EX, Cui JH, Yin ZX, Li C, Tang C, He YQ, Liu CW. A minimally invasive posterior lumbar interbody fusion using percutaneous long arm pedicle screw system for degenerative lumbar disease. Int. J. Clin. Exp. Med. 2014;7(11):3964-73.
  3. Vokshoor A, Khurana S, Wilson D, Filsinger P. Clinical and radiographic outcomes after spinous process fixation and posterior fusion in an elderly cohort. Surg. Technol. Int.. 2014;25:271-6.
  4. Corniola MV, Jagersberg M, Stienen MN, Gautschi OP. Complete cage migration/subsidence into the adjacent vertebral body after posterior lumbar interbody fusion. J. Clin. Neurosci. 2015;22(3):597-8. https://doi.org/10.1016/j.jocn.2014.08.017
  5. Zhang Z, Li H, Fogel GR, Xiang D, Liao Z, Liu W. Finite element model predicts the biomechanical performance of transforaminal lumbar interbody fusion with various porous additive manufactured cages. Computers in Biology and Medicine. 2018;95:167-74. https://doi.org/10.1016/j.compbiomed.2018.02.016
  6. Dijk MV, Smit TH, Sugihara S, Burger EH, Wuisman PI. The effect of cage stiffness on the rate of lumbar interbody fusion: an in vivo model using poly(Ilactic Acid) and titanium cages. Spine. 2002;27(7):682-8. https://doi.org/10.1097/00007632-200204010-00003
  7. McAfee PC, Cunningham BW, Lee GA, Orbegoso CM, Haggerty CJ, Fedder IL, Griffith SL. Revision strategies for salvaging or improving failed cylindrical cages. Spine. 1999;24(20):2147-53. https://doi.org/10.1097/00007632-199910150-00015
  8. Tullberg T. Failure of a carbon fiber implant. A case report. Spine. 1998;23(6):1804-6. https://doi.org/10.1097/00007632-199808150-00016
  9. Jurtz SM, Devine JN. PEEK biomaterial in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28(32):4845-69. https://doi.org/10.1016/j.biomaterials.2007.07.013
  10. Santos ER, Goss DG, Morcom RK, Fraser RD. Radiologic assessment of interbody fusion using carbon fiber cages. Spine. 2003;28(10):997-1001. https://doi.org/10.1097/01.BRS.0000061988.93175.74
  11. Olivares-Navarrete R, Gittens RA, Schneider JM, Hyzy SL, Haithcock DA, Ullrich PF, Schwartz Z, Boyan BD. Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone. Spine J. 2012;12(3):265-72. https://doi.org/10.1016/j.spinee.2012.02.002
  12. Sagherian BH, Claridge RJ. Salvage of failed total ankle replacement using tantalum trabecular metal: case series. Foot Ankle Int. 2014;36(3):318-24. https://doi.org/10.1177/1071100714556760
  13. Lee CH, Jhong GH, Hsu MY, Liu SJ, Wang CJ, Hung KC. Effect of force-induced mechanical stress at the coronary artery bifurcation stenting: relation to in-stent restenosis. J. Appl. Phys. 2014;115(20):204904. https://doi.org/10.1063/1.4878956
  14. Jensen CL, Winther N, Schroder HM, Petersen MM. Outcome of revision total knee arthroplasty with the use of trabecular metal cone for reconstruction of severe bone loss at the proximal tibia. Knee. 2014;21(6):1233-7. https://doi.org/10.1016/j.knee.2014.08.017
  15. Cannon TA, Boden RA, Stockley I. Use of the explant? system to remove trabecular metal augments in revision hip surgery. Ann. R. Coll. Surg. Engl. 2014;96(6):483-4. https://doi.org/10.1308/003588414X13946184903928
  16. Schlee M, Pradies G, Mehmke WU, Beneytout A, Stamm M, Meda RG, Kamm T, Poiroux F, Weinlich F, del-Canto-Pingarron M, Crichton E, Poulet JB, Bousquet P. Prospective, multicenter evaluation of trabecular metal-enhanced titanium dental implants placed in routine dental practices: 1-year interim report from the development period(2010 to 2011). Clin. Implant. Dent. Relat. Res. 2015;17(6):1141-53. https://doi.org/10.1111/cid.12232
  17. Wiewiorski M, Schlemmer T, Horisberger M, Prugsawan K, Valderrabano C, Barg A. Ankle fusion with a trabecular metal spacer and an anterior fusion plate. J. Foot Ankle Surg. 2015;54(3):490-3. https://doi.org/10.1053/j.jfas.2014.09.033
  18. Sousa SR, Lamghari M, Sampaio P, Moradas-Ferreira P, Barbosa MA. Osteoblast adhesion and morphology on TiO2 depends on the competitive preadsorption of albumin and fibronectin. J. Biomed. Mater. Res. A. 2008;84(2):281-90.
  19. Rapuano BE, Lee JJ, MacDonald DE. Titanium alloy surface oxide modulates the conformation of adsorbed fibronectin to enhance its binding to alpha (5) beta (1) integrins in osteoblasts. Eur. J. Oral Sci. 2012;120(3):185-94. https://doi.org/10.1111/j.1600-0722.2012.954.x
  20. Cheng A, Humayun A, Cohen DJ, Boyan BD, Schwartz Z. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication. 2014;6(4):045007. https://doi.org/10.1088/1758-5082/6/4/045007
  21. Assad M, Jarzem P, Leroux MA, Coillard C, Chernyshov AV, Charette S, Rivard CH. Porous titanium-nickel for intervertebral fusion in a sheep model: part1. Histomorphometric and radiological analysis. J. Biomed. Mater. Res. B: Appl. Biomater. 2003;64(2):107-20.
  22. Lee YH, Chung CJ, Wang CW, Peng YT, Chang CH, Chen CH, Chen YN, Li CT. Computational comparison of three posterior lumbar interbody fusion techniques by using porous titanium interbody cages with 50% porosity. Computers in Biology and Medicine. 2016;71:35-45. https://doi.org/10.1016/j.compbiomed.2016.01.024
  23. Kang H, Hollister SJ, Marca FL, Park P, Lin CY. Porous biodegradable lumbar interbody fusion cage design and fabrication using integrated global local topology optimization with laser sintering. J. Biomech. Eng. 2013;135(10):101013-8. https://doi.org/10.1115/1.4025102
  24. Tsai PI, Hsu CC, Chen SY. Biomechanical investigation into the structural design of porous additive manufactured cages using numerical and experimental approaches. Comput. Biol. Med. 2016;76:14-23. https://doi.org/10.1016/j.compbiomed.2016.06.016
  25. ASTM F2077-18. Test Methods For Intervertebral Body Fusion Devices.
  26. ASTM F2267-04(2018). Standard Test Method for Measuring Load Induced Subsidence of Intervertebral Body Fusion Device Under Static Axial Compression.
  27. ASTM, F1839-08(2016). Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments.
  28. Parthasarathy J, Starly B, Raman S, Christensen A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). Journal of the Mechanical Behavior of Biomedical Materials. 2010;3(3):249-59. https://doi.org/10.1016/j.jmbbm.2009.10.006
  29. Arabnejad S, Burnett JR, Pura JA, Singh B, Tanzer M, Pasini D. High-strength porous biomaterials for bone replacement: A Strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomater. 2016;30:345-56. https://doi.org/10.1016/j.actbio.2015.10.048
  30. Oh YJ, Seok SH, Lee SH, Kim KM, Kwon JS, Lim BS. Evaluation of physical properties of Titanium Specimen fabricated by 3D printing technique. Korean Journal of Dental Material. 2016;43(1):29-42. https://doi.org/10.14815/kjdm.2016.43.1.29
  31. Sterling A, Shamsaei N, Torries B, Thompson SM. Fatigue Behaviour of Additively Manufactured Ti-6Al-4V. Procedia Engineering. 2015;33:576-89.
  32. Xiong DY, Qian C, Sun J. Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures. Dental Materials Journal. 2012;31:815-20. https://doi.org/10.4012/dmj.2012-065
  33. Peck JH, Kavlock KD, Showalter BL, Ferrell BM, Peck DG, Dmitriev AE. Mechanical performance of lumbar intervertebral body fusion devices: An analysis of data submitted to the Food and Drug Administration. Journal of Biomechanics. 2018;78:87-93. https://doi.org/10.1016/j.jbiomech.2018.07.022