DOI QR코드

DOI QR Code

Lp (p ≥ 1) SOLUTIONS OF MULTIDIMENSIONAL BSDES WITH TIME-VARYING QUASI-HÖLDER CONTINUITY GENERATORS IN GENERAL TIME INTERVALS

  • Lishun, Xiao (Department of Epidemiology and Biostatistics Xuzhou Medical University) ;
  • Shengjun, Fan (School of Mathematics China University of Mining and Technology)
  • Received : 2019.08.05
  • Accepted : 2019.11.12
  • Published : 2020.04.30

Abstract

The objective of this paper is solving multidimensional backward stochastic differential equations with general time intervals, in Lp (p ≥ 1) sense, where the generator g satisfies a time-varying Osgood condition in y, a time-varying quasi-Hölder continuity condition in z, and its ith component depends on the ith row of z. Our result strengthens some existing works even for the case of finite time intervals.

Keywords

Acknowledgement

Supported by : Xuzhou Medical University, National Natural Science Foundation of China

The authors would like to thank the referee for his/her careful reading and helpful suggestions.

References

  1. B. Bouchard, R. Elie, and A. Reveillac, BSDEs with weak terminal condition, Ann. Probab. 43 (2015), no. 2, 572-604. https://doi.org/10.1214/14-AOP913
  2. P. Briand, B. Delyon, Y. Hu, E. Pardoux, and L. Stoica, $L^p$ solutions of backward stochastic differential equations, Stochastic Process. Appl. 108 (2003), no. 1, 109-129. https://doi.org/10.1016/S0304-4149(03)00089-9
  3. P. Briand, J.-P. Lepeltier, and J. San Martin, One-dimensional backward stochastic differential equations whose coefficient is monotonic in y and non-Lipschitz in z, Bernoulli 13 (2007), no. 1, 80-91. https://doi.org/10.3150/07-BEJ5004
  4. R. Buckdahn, H.-J. Engelbert, and A. Rascanu, On weak solutions of backward stochastic differential equations, Theory Probab. Appl. 49 (2005), no. 1, 16-50; translated from Teor. Veroyatn. Primen. 49 (2004), no. 1, 70-108. https://doi.org/10.1137/S0040585X97980877
  5. S. Chen, $L^p$ solutions of one-dimensional backward stochastic differential equations with continuous coefficients, Stoch. Anal. Appl. 28 (2010), no. 5, 820-841. https://doi.org/10.1080/07362994.2010.503456
  6. Z. Chen and B. Wang, Infinite time interval BSDEs and the convergence of g-martingales, J. Austral. Math. Soc. Ser. A 69 (2000), no. 2, 187-211. https://doi.org/10.1017/S1446788700002172
  7. Y. Dong and S. Fan, $L^p$ solutions for general time interval multidimensional BSDEs with weak monotonicity and general growth generators, Commun. Korean Math. Soc. 33 (2018), no. 3, 985-999. https://doi.org/10.4134/CKMS.c170305
  8. N. El Karoui, S. Peng, and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance 7 (1997), no. 1, 1-71. https://doi.org/10.1111/1467-9965.00022
  9. S. Fan, $L^p$ solutions of multidimensional BSDEs with weak monotonicity and general growth generators, J. Math. Anal. Appl. 432 (2015), no. 1, 156-178. https://doi.org/10.1016/j.jmaa.2015.06.049
  10. S. Fan and L. Jiang, $L^p$ solutions of finite and infinite time interval BSDEs with non-Lipschitz coefficients, Stochastics 84 (2012), no. 4, 487-506. https://doi.org/10.1080/17442508.2011.615933
  11. S. Fan, L. Jiang, and M. Davison, Uniqueness of solutions for multidimensional BSDEs with uniformly continuous generators, C. R. Math. Acad. Sci. Paris 348 (2010), no. 11-12, 683-686. https://doi.org/10.1016/j.crma.2010.03.013
  12. S. Fan, L. Jiang, and D. Tian, One-dimensional BSDEs with finite and infinite time horizons, Stochastic Process. Appl. 121 (2011), no. 3, 427-440. https://doi.org/10.1016/j.spa.2010.11.008
  13. S. Fan and D. Liu, A class of BSDE with integrable parameters, Statist. Probab. Lett. 80 (2010), no. 23-24, 2024-2031. https://doi.org/10.1016/j.spl.2010.09.009
  14. S. Fan, Y. Wang, and L. Xiao, Multidimensional BSDEs with uniformly continuous generators and general time intervals, Bull. Korean Math. Soc. 52 (2015), no. 2, 483-504. https://doi.org/10.4134/BKMS.2015.52.2.483
  15. M. Fuhrman and G. Tessitore, Infinite horizon backward stochastic differential equations and elliptic equations in Hilbert spaces, Ann. Probab. 32 (2004), no. 1B, 607-660. https://doi.org/10.1214/aop/1079021459
  16. S. Hamadene, Multidimensional backward stochastic differential equations with uniformly continuous coefficients, Bernoulli 9 (2003), no. 3, 517-534. https://doi.org/10.3150/bj/1065444816
  17. M. Kobylanski, Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab. 28 (2000), no. 2, 558-602. https://doi.org/10.1214/aop/1019160253
  18. J. P. Lepeltier and J. San Martin, Backward stochastic differential equations with continuous coefficient, Statist. Probab. Lett. 32 (1997), no. 4, 425-430. https://doi.org/10.1016/S0167-7152(96)00103-4
  19. X. Mao, Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients, Stochastic Process. Appl. 58 (1995), no. 2, 281-292. https://doi.org/10.1016/0304-4149(95)00024-2
  20. Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Lett. 14 (1990), no. 1, 55-61. https://doi.org/10.1016/0167-6911(90)90082-6
  21. D. J. Tian, L. Jiang, and X. J. Shi, Integrable solutions to BSDEs with quasi-Holder continuous generators, Acta Math. Appl. Sin. 36 (2013), no. 5, 783-790. (In Chinese) http://applmath.com.cn/CN/volumn/volumn 1554.shtml
  22. Q. Wang, J. Liao, and S. Fan, $L^p$ (1 < p ${\leq}$ 2) solutions of one-dimensional BSDEs whose generator is weakly monotonic in y and non-Lipschitz in z, Comm. Statist. Simulation Comput. 48 (2019), no. 7, 2099-2109. https://doi.org/10.1080/03610918.2018.1433842
  23. L.-S. Xiao, S.-J. Fan, and N. Xu, $L^p$ (p ${\geq}$ 1) solutions of multidimensional BSDEs with monotone generators in general time intervals, Stoch. Dyn. 15 (2015), no. 1, 1550002, 34 pp. https://doi.org/10.1142/S0219493715500021