Acknowledgement
Supported by : Sungshin Women's University
This paper was supported by a grant from Sungshin Women's University.
References
- W. Fulton, Young Tableaux, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997.
- W. Fulton and J. Harris, Representation Theory, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4612-0979-9
- R. Goodman and N. R. Wallach, Representations and invariants of the classical groups, Encyclopedia of Mathematics and its Applications,68, Cambridge University Press, Cambridge, 1998.
- T. Harima, T. Maeno, H. Morita, Y. Numata, A.Wachi, and J.Watanabe, The Lefschetz properties, Lecture Notes in Mathematics, 2080, Springer, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-38206-2
- T. Harima, J. Migliore, U. Nagel, and J. Watanabe, The weak and strong Lefschetz properties for Artinian K-algebras, J. Algebra 262 (2003), no. 1, 99-126. https://doi.org/10.1016/S0021-8693(03)00038-3
- J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York, 1978.
- A. Iarrobino, P. M. Marques, and C. MaDaniel, Jordan type and the Associated graded algebra of an Artinian Gorenstein algebra, arXiv:1802.07383 (2018).
- S. J. Kang, Y. R. Kim, and Y. S. Shin, The strong Lefschetz property and representation theory, In parparation.
- J. Migliore and U. Nagel, Survey article: a tour of the weak and strong Lefschetz properties, J. Commut. Algebra 5 (2013), no. 3, 329-358. https://doi.org/10.1216/JCA-2013-5-3-329
- R. P. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods 1 (1980), no. 2, 168-184. https://doi.org/10.1137/0601021
- J. Watanabe, The Dilworth number of Artinian rings and finite posets with rank function, in Commutative algebra and combinatorics (Kyoto, 1985), 303-312, Adv. Stud. Pure Math., 11, North-Holland, Amsterdam, 1987. https://doi.org/10.2969/aspm/01110303