DOI QR코드

DOI QR Code

Characteristics of Earthquake Responses of a Rectangular Liquid Storage Tanks Subjected to Bi-directional Horizontal Ground Motions

수평 양방향 지반운동이 작용하는 직사각형 액체저장탱크의 지진응답 특성

  • Lee, Jin Ho (Department of Ocean Engineering, Pukyong National Univ.) ;
  • Lee, Se Hyeok (Seismic Safety Research Center, Korea Institute of Civil Engineering and Building Technology)
  • 이진호 (부경대학교 해양공학과) ;
  • 이세혁 (한국건설기술연구원 지진안전연구센터)
  • Received : 2019.10.05
  • Accepted : 2019.10.22
  • Published : 2020.02.29

Abstract

Analytical and experimental studies show that the dynamic behavior of liquid storage tanks is significantly influenced by the fluid-structure interaction (FSI). The effects of FSI must be rigorously considered for accurate earthquake analysis and seismic design of liquid storage tanks. In this study, a dynamic analysis of a rectangular liquid storage tank subjected to bi-directional earthquake ground motions is performed and its dynamic characteristics are examined, with the effects of FSI rigorously considered. Hydrodynamic pressure is evaluated using the finite-element approach with acoustic elements and applied to the structure. The responses of the rectangular tank subjected to bi-directional earthquake ground motions are thus obtained. It can be observed that the incident angle of bi-directional horizontal ground motions has significant effects on the dynamic responses of the considered system. Therefore, the characteristics of the system must be considered in its seismic design and performance evaluation.

액체저장탱크의 지진 거동은 유체-구조물 상호작용에 의해 복잡하게 나타나므로, 이 시스템의 지진응답과 피해를 정확하게 예측하기 위해서는 이를 엄밀히 고려하여야 한다. 이 연구에서는 유체-구조물 상호작용을 엄밀히 고려하여 양방향 수평 지반운동이 작용하는 직사각형 액체저장탱크의 지진응답 해석을 수행하고 그 응답 특성을 분석하고자 한다. 이를 위해 지진하중 작용 시 발생하는 유체 동수압을 유한요소 기법을 사용하여 산정하고, 이 동수압을 구조물의 유한 요소에 작용하여 전체 시스템의 동적 거동을 모사한다. 예제 직사각형 액체저장탱크의 지진응답 해석을 통하여 대상 시스템의 동적 거동은 양방향 수평 지반운동이 작용하는 방위각에 의해 유의미한 영향을 받음을 확인할 수 있다. 그러므로 직사각형 액체저장탱크의 내진설계를 수행하거나 내진성능을 검토할 때는 이러한 특성을 고려하여야 할 것이다.

Keywords

References

  1. ABAQUS (2019) ABAQUS Documentation, Dassault Systemes, Providence, RI, USA.
  2. Cook. R.D., Malkus, D.S., Plesha, M.E., Witt, R.J. (2002) Concepts and Applications of Finite Element Analysis, 4th Edition, John Wiley & Sons. Inc..
  3. Haroun, M.A. (1984) Stress Analysis of Rectangular Walls under Seismically Induced Hydrodynamics Loads, Bull. Seismol. Soc. Am., 74, pp.1031-1041. https://doi.org/10.1785/BSSA0740031031
  4. Lamb, H. (1945) Hydrodynamics, 6th Edition, Dover Publications.
  5. Olson, L.G., Bathe, K.-J. (1983) A Study of Displacement-based Fluid Finite Elements for Calculating Frequencies and fluid and fluid-structure Systems, Nucl. Eng. & Des., 76, pp.137-151. https://doi.org/10.1016/0029-5493(83)90130-9
  6. Son, I.-M., Kim, J.-M., Lee, C. (2019) Seismic Soil-Structure Interaction Analyses of LNG Storage Tanks Depending on Foundation Type, J. Comput. Struct. Eng. Inst. Korea, 32(3), pp.155-164. https://doi.org/10.7734/COSEIK.2019.32.3.155