참고문헌
- C. Ratnasamy and J. P. Wagner, "Water gas shift catalysis", Catalysis Reviews Science and Engineering, Vol. 51, No. 3, 2009, pp. 325-440, doi: https://doi.org/10.1080/01614940903048661.
-
J. H. Park, J. H. Baek, G. H Jo, and K. B. Yi, "Catalytic characteristic of water-treated Cu/ZnO/MgO/
$Al_2O_3$ catalyst for LT-WGS reaction", Trans. of Korean Hydrogen and New Energy Society, Vol. 30, No. 2, 2019, pp. 95-102, doi: https://doi.org/10.7316/KHNES.2019.30.2.95. - A. Chougule and R. R. Sonde, "Modelling and experimental investigation of compact packed bed design of methanol steam reformer", Int. J. Hydrogen Energy, Vol. 44, No. 57, 2019, pp. 29937-29945, doi: https://doi.org/10.1016/j.ijhydene.2019.09.166.
-
D. W. Jeong, J. O. Shim, W. J. Jang, and H. S. Roh, "A study on Pt-Na/
$CeO_2$ catalysts for single stage water gas shift reaction", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 2, 2012, pp. 111-116, doi: https://doi.org/10.7316/KHNES.2012.23.2.111. - D. J. Seo, W. L. Yoon, K. S. Kang, and J. W. Kim, "Patent trend for hydrogen production technology by steam reforming of natural gas", Trans. of the Korean Hydrogen and New Energy Society, Vol. 18, No. 4, 2007, pp. 464-480. Retrieved from http://www.koreascience.or.kr/article/JAKO200710736976806.page.
-
K. H. Kim, K. Y. Koo, U. H. Jung, and W. L. Yoon, "Preferential CO oxidation over Ce-promoted
$Pt/\gamma-Al_2O_3$ catalyst", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 6, 2012, pp. 640-646, doi: https://doi.org/10.7316/KHNES.2012.23.6.640. - J. L. Ayastuy, M. P. Gonzalez-Marcos, and M. A. Gutierrez-Ortiz, "Promotion effect of Sn in alumina-supported Pt catalysts for CO-PROX", Catalysis Communications, Vol. 12, No. 10, 2011, pp. 895-900, doi: https://doi.org/10.1016/j.catcom.2011.02.011.
- J. O. Shim, H. S. Na, S. Y. Ahn, W. J. Jang, and H. S. Roh, "An optimization of aging time for low-temperature water-gas shift over Cu-Zn-Al catalyst", Trans. of Korean Hydrogen and New Energy Society, Vol. 30, No. 2, 2019, pp. 103-110, doi: https://doi.org/10.7316/KHNES.2019.30.2.103.
- J. H. Kim, Y. S. Jang, J. C. Kim, and D. H. Kim, "Anodic aluminum oxide supported Cu-Zn catalyst for oxidative steam reforming of methanol", Korean J. Chem. Eng., Vol. 36, No. 3, 2019, pp. 368-376, doi: https://doi.org/10.1007/s11814-018-0211-9.
- Y. T. Seo, D. J. Seo, J. H. Jeong, and W. L. Yoon, "Development of compact fuel processor for 2 kW class residential PEMFCs", J. Power Sources, Vol. 163, No. 1, 2006, pp. 119-124, doi: https://doi.org/10.1016/j.jpowsour.2006.05.022.
-
H. M. Kim, K. W. Jeon, H. S. Na, W. J. Jang, and D. W. Jeong, "The effect of Cu loading on the performance of
$Cu-Ce_{0.8}Zr_{0.2}O_{2}$ catalysts for single stage water gas shift reaction", Trans. of Korean Hydrogen and New Energy Society, Vol. 28, No. 4, 2017, pp. 345-351, doi: https://doi.org/10.7316/KHNES.2017.28.4.345. - Y. S. Oh, T. Y. Song, Y. S. Baek, and L. S. Choi, "Efficiency analysis of compact type steam reformer", Trans. of Korean Hydrogen and New Energy Society, Vol. 13, No. 4, 2002, pp. 313-321. Retrieved from http://www.koreascience.or.kr/article/JAKO200230360539783.page.
-
S. B. Kim, M. S. Kim, S. W. Kim, and S. C. Hong "Reaction characteristics of Cu/
$CeO_2$ catalysts for CO oxidation", Applied Chemistry for Engineering, Vol. 30, No. 5, 2019, pp. 620-626, doi: https://doi.org/10.14478/ace.2019.1067. -
K. G. Azzam, I. V. Babich, K. Seshan, and L. Lefferts, "Single stage water gas shift conversion over Pt/
$TiO_2$ -problem of catalyst deactivation", Applied Catalysis A: General, Vol. 338, No. 1-2, 2008, pp. 66-71, doi: https://doi.org/10.1016/j.apcata. 2007.12.020. -
K. R. Hwang, S. K. Ihm, S. C. Park, and J. S. Park, "Pt/
$ZrO_2$ catalyst for a single-stage water-gas shift reaction: Ti addition effect", Int. J. Hydrogen Energy, Vol. 38, No. 14, 2013, pp. 6044-6051, doi: https://doi.org/10.1016/j.ijhydene.2013.01.101. -
C. A. Franchini, A. M. Duarte de Farias, E. M. Albuquerque, R. dos Santos, and M. A. Fraga, "Single-stage medium temperature water-gas shift reaction over Pt/
$ZrO_2$ - support structural polymorphism and catalyst deactivation", Applied Catalysis B: Environmental, Vol. 117-118, 2012, pp. 302-309, doi: https://doi.org/10.1016/j.apcatb.2012.01.028. - C. K. Byun, H. B. Im, J. H. Park, J. H. Baek, J. M. Jeong, W. R. Yoon, and K. B. Yi, "Enhanced catalytic activity of Cu/Zn catalyst by Ce addition for low temperature water gas shift reaction", Clean Technology, Vol. 21, No. 3, 2015, pp. 200-206, doi: https://doi.org/10.7464/ksct.2015.21.3.200.
- H. S. Na, D. W. Jeong, W. J. Jang, Y. L. Lee, and H. S. Roh, "A study on Cu based catalysts for water gas shift reaction to produce hydrogen from waste-derived synthesis gas", Tran s. of the Korean Hydrogen and New Energy Society, Vol. 25, No. 3, 2014, pp. 227-233, doi: https://doi.org/10.7316/ KHNES.2014.25.3.227.
- J. A Rodriguez, P. Liu, X. Wang, W. Wen, J. Hanson, J. Hrbek, M. Perez, and J. Evans, "Water-gas shift activity of Cu surfaces and Cu nanoparticles supported on metal oxides", Catal. Today, Vol. 143, No. 1-2, 2009, pp. 45-50, doi: https://doi.org/10.1016/j.cattod.2008.08.022.
-
L. Li, L. Song, H. Wang, C. Chen, Y. She, Y. Zhan, X. Lin, and Q. Zheng, "Water-gas shift reaction over CuO/
$CeO_2$ catalysts: effect of$CeO_2$ supports previously prepared by precipitation with different precipitants", Int. J. Hydrogen Energy, Vol. 36, No. 15, 2011, pp. 8839-8849, doi: https://doi.org/10.1016/j.ijhydene.2011.04.137. - D. W. Jeong, W. J. Jang, J. O. Shim, W. B. Han, H. S. Roh, U. H. Jung, and W. L. Yoon, "Low-temperature water-gas shift reaction over supported Cu catalysts", Renewable Energy, Vol. 65, 2014, pp. 102-107, doi: https://doi.org/10.1016/j.renene.2013.07.035.
-
W. Yang, D. Li, D. Xu, and X. Wang, "Effect of
$CeO_2$ preparation method and Cu loading on CuO/$CeO_2$ catalysts for methane combustion", Journal of Natural Gas Chemistry, Vol. 18, No. 4, 2009, pp. 458-466, doi: https://doi.org/10.1016/S1003-9953(08)60141-3. -
S. B. T. Tran, H. Choi, S. Oh, and J. Y Park, "Defective
$Nb_2O_5$ -supported Pt catalysts for CO oxidation: promoting catalytic activity via oxygen vacancy engineering", J. Catal., Vol. 375, 2019, pp. 124-134, doi: https://doi.org/10.1016/j.jcat.2019.05.017. -
F. Zhang, Q. Zheng, K. Wei, X. Lin, H. Zhang, J. Li, and Y. Cao, "Improved performance of Au/
$Fe_2O_3$ catalysts promoted with$ZrO_2\;and\;Nb_2O_5$ in the WGS reaction under hydrogenrich conditions", Catal. Letters, Vol. 108, No. 3-4, 2006, pp. 131-136, doi: https://doi.org/10.1007/s10562-006-0047-5. - E. Ramirez-Cabrera, A. Atkinson, and D. Chadwick, "Reactivity of ceria, Gd- and Nb-doped ceria to methane", Applied Catalysis B: Environmental, Vol. 36, No. 3, 2002, pp. 193-206, doi: https://doi.org/10.1016/S0926-3373(01)00299-5.
-
S. O. Choi and S. H. Moon, "Performance of
$La_{1-x}Ce_{x}Fe_{0.7}Ni_{0.3}O_{3}$ perovskite catalysts for methane steam reforming", Catal. Today Vol. 146, No. 1-2, 2009, pp. 148-153, doi: https://doi.org/10.1016/j.cattod.2009.02.023. - J. Mi, J. Zhang, Y. Cao, C. Chen, X. Lin, J. Chen, and L. Jiang, "Sulfur resistant WGS catalyst for hydrogen production based on CoMo supported by Nb modified MgAl mixed oxide", Int. J. Hydrogen Energy, Vol. 42, No. 50, 2017, pp. 29935-29943, doi: https://doi.org/10.1016/j.ijhydene.2017.08.115.
-
X. Lin, C. Chen, J. Ma, X. Fang, Y. Zhan, and Q. Zheng, "Promotion effect of
$Nb^{5+}\;for\;Cu/CeO_2$ water-gas shift reaction catalyst by generating mobile electronic carriers", Int. J. Hydrogen Energy, Vol. 38, No. 27, 2013, pp. 11847-11852, doi: https://doi.org/10.1016/j.ijhydene.2013.07.001. -
H. S. Roh, I. H. Eum, and D. W. Jeong, "Low temperature steam reforming of methane over
$Ni-Ce_{(1-x)}Zr(x)O2$ catalysts under severe conditions", Renewable Energy, Vol. 42, 2012, pp. 212-216, doi: https://doi.org/10.1016/j.renene.2011.08.013. -
W. J. Jang, D. W. Jeong, J. O. Shim, and H. S. Roh, "The effect of calcination temperature on the performance of
$Ni-Ce_{0.8}Zr_{0.2}O_{2}$ catalysts for steam reforming of methane under severe conditions", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 3, 2012, pp. 213-218, doi: https://doi.org/10.7316/KHNES.2012.23.3.213. - D. W. Jeong, W. J. Jang, J. O. Shim, W. B. Han, K. W. Jeon, Y. C. Seo, and H. S. Roh, "A comparison study on high-temperature water-gas shift reaction over Fe/Al/Cu and Fe/Al/Ni catalysts using simulated waste-derived synthesis gas", J. Mater. Cycles Waste Manag., Vol. 16, No. 4, 2014, pp. 650-656, doi: https://doi.org/10.1007/s10163-014-0272-8.
-
C. Pedrero, T. Waku, and E. Iglesia, "Oxidation of CO in
$H_2$ -CO mixtures catalyzed by platinum: alkali effects on rates and selectivity", J. Catal., Vol. 233, No. 1, 2005, pp. 242-255, doi: https://doi.org/10.1016/j.jcat.2005.04.005.