DOI QR코드

DOI QR Code

수소발생용 Ni-Zn-Fe 합금 전극의 간헐적 작동에 따른 비활성화 특성

Intermittent Operation Induced Deactivation Mechanism for HER of Ni-Zn-Fe Electrode for Alkaline Electrolysis

  • 투고 : 2019.12.18
  • 심사 : 2020.02.28
  • 발행 : 2020.02.28

초록

In this study, we investigated the deactivation characteristics of Ni-Zn-Fe electrodes due to intermittent operation in alkaline water electrolysis. To find suitable method to accelerate deactivation of electrode, the accelerated stress-test (AST) which repeated on/off step was performed with constant current/voltage control. The AST under constant voltage control is suitable to deactivate electrode so it were selected to investigate deactivation of electrode. The AST which repeated on/off step in range of -1.3 V and 0 V was performed and the relationship between oxidation current and electrode deactivation in the off step was investigate. As results, it was confirmed that the nickel and zinc on electrode surface were oxidized due to anodic current which occurred at off step.

키워드

참고문헌

  1. T. N. Veziroglu and S. N. Sahin, "21st century's energy: hydrogen energy system", Energy Conv. Manag., Vol. 49, No. 7, 2008, pp. 1820-1831, doi: https://doi.org/10.1016/j.enconman.2007.08.015.
  2. T. H. Lee, "Water electrolyzer technical overview and outlook", J. of the Electric World, Vol. 459, 2015, pp. 14-17. Retrieved from http://www.kea.kr/elec_journal/2015_3/2.pdf.
  3. A. E. Mauer, D. W. Kirk, and S. J. Thorpe, "The role of iron in the prevention of nickel electrode deactivation in alkaline electrolysis", Electrochim. Acta, Vol. 52, No. 11, 2007, pp. 3505-3509, doi: https://doi.org/10.1016/j.electacta.2006.10.037.
  4. H. C. Lim, "Use of hydrogen energy for power storage & outlook", J. of Electrical World, Vol. 465, 2015, pp. 35-41. Retrieved from http://www.kea.kr/elec_journal/2015_9/6.pdf.
  5. J. Divisek, H. Schmitz, and J. Balej, "Ni and Mo coatings as hydrogen cathodes", J. Appl. Electrochem., Vol. 19, No. 4, 1989, pp. 519-530, doi: https://doi.org/10.1007/BF01022108.
  6. J. Divisek, J. Mergel, and H. Schmitz, "Advanced water electrolysis and catalyst stability under discontinuous operation", Int. J. Hydrogen Energy, Vol. 15, No. 2, 1990, pp. 105-114, doi: https://doi.org/10.1016/0360-3199(90)90032-T.
  7. J. Divisek, H. Schmitz, and B. Steffen, "Electrocatalyst materials for hydrogen evolution", Electrochem. Acta., Vol. 39, No. 11-12, 1994, pp. 1723-1731, doi: https://doi.org/10.1016/0013-4686(94)85157-3.
  8. W. Hu, "Electrocatalytic properties of new electrocatalysts for hydrogen evolution in alkaline water electrolysis", Int. J. Hydrogen Energy, Vol. 25, No. 2, 2000, pp. 111-118, doi:https://doi.org/10.1016/S0360-3199(99)00024-5.
  9. Y. Hu and D. A. Scherson, "Potential-induced plastic deformations of nickel hydrous electrodes in alkaline electrolytes: an in situ atomic force microscopy study", J. Phys. Chem., Vol. 101, No. 27, 1997, pp, 5370-5376, doi:https://doi.org/10.1021/jp970399m.
  10. D. S. Hall, C. Bock and B. R. MacDougall, "Surface layers in alkaline media: nickel hydrides on metallic nickel electrodes", ECS Transactions, Vol. 50, No. 31, 2013, pp. 165-179, doi: https://doi.org/10.1149/05031.0165ecst.
  11. D. S. Hall, C. Bock and B. R. MacDougall, "The electrochemistry of metallic nickel: oxides, hydroxides, hydrides and alkaline hydrogen evolution", J. Electrochem. Soc., Vol. 160, No. 3, 2013, pp. 235-243, doi: https://doi.org/10.1149/2.026303jes.
  12. S. L. Medway, C. A. Lucas, A. Kowal, R. J. Nichols, and D. Johnson, "In situ studies of the oxidation of nickel electrodes in alkaline solution", J. Electroanal. Chem., Vol. 587, No. 1, 2006, pp. 172-181, doi: https://doi.org/10.1016/j.jelechem.2005.11.013.
  13. A. R. Mainar, O. Leonet, M. Bengoechea, I. Boyano, I. de Meatza, A. Kvasha, A. Guerfi, and J. A. Blazquez, "Alkaline aqueous electrolytes for secondary zinc-air batteries: an overview", Int. J. Energy Res., Vol. 40, 2016, pp. 1032-1049, doi: https://doi.org/10.1002/er.3499.
  14. A. R. Mainar, L. C. Colmenares, J. A. Blazquez, and I. Urdampilleta, "A brief overview of secondary zinc anode development: the key of improving zinc‐based energy storage systems", J. Energy Res., Vol. 42, No. 3, 2018, pp. 903-918, doi: https://doi.org/10.1002/er.3822.
  15. A. Khor, P. Leung, M. R. Mohamed, C. Flox, Q. Xu, L. An, R. G. A. Wills, J. R. Morante, and A. A. Shah, "Review of zinc-based hybrid flow batteries: from fundamentals to applications", Material Today Energy, Vol. 8, 2018, pp. 80-108, doi: https://doi.org/10.1016/j.mtener.2017.12.012.
  16. S. M. Oh, "Electrochemistry", 2nd ed. Free Academy, Korea, 2014, pp. 1-26, 145-164.
  17. D. Chade, L. Berlouis, D. Infield, P. T. Nielsen, and T. Mathiesen, "Deactivation mechanisms of atmospheric plasma spraying raney nickel electrodes", J. Electrochem. Soc., Vol. 163, No. 3, 2016, pp. 308-317, doi: https://doi.org/10.1149/2.0091605jes.
  18. L. F. Huang, M. J. Hutchison, R. J. Santucci, J. R. Scully, and J. M. Rondinelli, "Improved electrochemical phase diagrams from theory and experiment: the Ni−water system and its complex compounds", J. Phys. Chem., Vol. 121, No. 18, 2017, pp. 9782-9789, doi: https://doi.org/10.1021/acs.jpcc.7b02771.
  19. C. Li and S. Liu, "Preparation and characterization of Ni $(OH)_2$ and NiO mesoporous nanosheets, J. Nanomaterials", Vol. 2012, 2012, pp. 1-6, doi: https://doi.org/10.1155/2012/648012.
  20. M. Cao, X. He, J. Chen, and C. Hu, "Self-assembled nickel hydroxide three-dimensional nanostructures: a nanomaterial for alkaline rechargeable batteries", Crystal Growth & Design, Vol. 7, No. 1, 2007, pp. 170-174, doi: https://doi.org/10.1021/cg060524w.
  21. J. Tientong, S. Garcia, C. R. thurber, and T. D. Golden, "Synthesis of nickel and nickel hydroxide nanopowders by simplified chemical reduction", J. Nano., Vol. 2014, 2014, pp. 1-6, doi: https://doi.org/10.1155/2014/193162.
  22. K. AL-Rashedi, M. Farooqui, and G. Rabbani, "Nickel oxide thin film synthesis by sol-gel method on glass substrates", Int. J. of Universal Print, Vol. 4, No. 8, 2018, pp. 508-516. Retrieved from http://www.universalprint.org/wp-content/uploads/2018/03/ACTRA-2018-078.pdf.
  23. C. C. Hu and H. Teng, "Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting", J. Catal., Vol. 272, No. 1, 2010, pp. 1-8, doi: https://doi.org/10.1016/j.jcat.2010.03.020.
  24. D. Jia, Q. Ren, L. Sheng, F. Li, G. Xie, and Y. Miao, "Preparation and characterization of multifunctional polypyrrole-Au coated NiO nanocomposites and study of their electrocatalysis toward several important bio-thiols", Sens. Actuators B Chem., Vol. 160, No. 1, 2011, pp. 168-173, doi:https://doi.org/10.1016/j.snb.2011.07.028.
  25. F. Safizadeh, E. Ghali, and G. Houlachi, "Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions - a review", Int. J. Hydrogen Energy, Vol. 40, No. 1, 2015, pp. 256-274, doi: https://doi.org/10.1016/j.ijhydene.2014.10.109.
  26. Y. Xiao, Y. Liu, Z. Tang, L. Wu, Y. Zeng, Y. Xu, and Y. He, "Porous Ni-Cr-Fe alloys as cathode materials for the hydrogen evolution reaction", RSC Advances, Vol. 6, No. 56, 2016, pp. 51096-51105, doi: https://doi.org/10.1039/C6RA07316F.