References
- Berners-Price, S.J., Johnson, R.K., Giovenella, A.J., Faucette, L.F., Mirabelli, C.K., Sadler, P.J., Antimicrobial and anticancer activity of tetrahedral, chelated, diphosphine silver (I) complexes: comparison with copper and gold. J. Inorg. Biochem., 33, 285-295 (1988). https://doi.org/10.1016/0162-0134(88)80007-2
- Gaetke, L.M., Chow, C.K., Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicol., 189, 147-163 (2003). https://doi.org/10.1016/S0300-483X(03)00159-8
- Robertson, T.A., Sanchez, W.Y., Roberts, M.S., Are commercially available nanoparticles safe when applied to the skin? J. Biomed. Nanotech., 6, 452-468 (2010). https://doi.org/10.1166/jbn.2010.1145
- Perez-Lopez, B., Merkoci, A., Nanomaterials based biosensors for food analysis applications. Trends Food Sci. Tech., 22, 625-639 (2011). https://doi.org/10.1016/j.tifs.2011.04.001
- Kim, J.S., Kuk, E., Yu, K.N., Kim, J.H., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.Y., Kim, Y. K., Antimicrobial effects of silver nanoparticles. Nanomedicine, 3, 95-101 (2007). https://doi.org/10.1016/j.nano.2006.12.001
- Yoon, K.Y., Byeon, J.H., Park, J.H., Hwang, J., Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ., 373, 572-575 (2007). https://doi.org/10.1016/j.scitotenv.2006.11.007
- Kim, K.J., Sung, W.S., Moon, S.K., Choi, J.S., Kim, J.G., Lee, D.G., Antifungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol., 18, 1482-1484 (2008).
- Nasrollahi, A., Pourshamsian, K.H., Mansourkiaee, P., Antifungal activity of silver nanoparticles on some of fungi. Int. J. Nano Dimens., 1, 233 (2011).
- Grass, G., Rensing, C., Solioz, M., Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol., 77, 1541-1547 (2011). https://doi.org/10.1128/AEM.02766-10
- Vincent, M., Hartemann, P., Engels-Deutsch, M., Antimicrobial applications of copper. Int. J. Hyg. Environ. Health, 219(7), 585-591 (2016). https://doi.org/10.1016/j.ijheh.2016.06.003
- Ren, G., Hu, D., Cheng, E.W., Vargas-Reus, M.A., Reip, P., Allaker, R.P., Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents, 33, 587-590 (2009). https://doi.org/10.1016/j.ijantimicag.2008.12.004
- Yoon, K.Y., Byeon, J.H., Park, J.H., Hwang, J., Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ., 373, 572-575 (2007). https://doi.org/10.1016/j.scitotenv.2006.11.007
- Foster, H.A., Sheel, D.W., Sheel, P., Evans, P., Varghese, S., Rutschke, N., Yates, H.M., Antimicrobial activity of titania/silver and titania/copper films prepared by CVD. J. Photochem. Photobiol. A Chem., 216, 283-289 (2010). https://doi.org/10.1016/j.jphotochem.2010.09.017
- Tan, S.J., Yan, Y.K., Lee, P.P.F., Lim, K.H., Copper, gold and silver compounds as potential new anti-tumor metallodrugs. Future Med. Chem., 2, 1591-1608 (2010). https://doi.org/10.4155/fmc.10.234
- Faundez, G., Troncoso, M., Navarrete, P., Figueroa, G., Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol., 4, 19 (2004). https://doi.org/10.1186/1471-2180-4-19
- Ruparelia, J.P., Chatterjee, A.K., Duttagupta, S.P., Mukherji, S., Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater., 4, 707-716 (2008). https://doi.org/10.1016/j.actbio.2007.11.006
- Wheeldon, L.J., Worthington, T., Lambert, P.A., Hilton, A.C., Lowden, C.J., Elliott, T.S., Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory. J. Antimicrob. Chemoth., 62, 522-525 (2008). https://doi.org/10.1093/jac/dkn219
- Bogdanovic, U., Lazic, V., Vodnik, V., Budimir, M., Markovic, Z., Dimitrijevic, S., Copper nanoparticles with high antimicrobial activity. Mater. Lett., 128, 75-78 (2014). https://doi.org/10.1016/j.matlet.2014.04.106
- Prado, V.J., Vidal, R.A., Duran, C.T., Application of copper bactericidal properties in medical practice. Rev. Med. Chile, 140, 1325-1332 (2012). https://doi.org/10.4067/S0034-98872012001000014
- Yun, H., Park, K., Ryu, K.Y., Kim, S.R., Yun, J.C., Kim, B.S., Effects of LED treatment on microbial reduction and quality characteristics of red pepper powder. J. Food Hyg. Saf., 27, 442-448 (2012). https://doi.org/10.13103/JFHS.2012.27.4.442
- Woo, H.I., Kim, J.B., Choi, J.H., Kim, E.H., Kim, D.S., Park, K.S., Kim, E.J., Eun, J.B., Om, A.S., Evaluation of the level of microbial contamination in the manufacturing and processing company of red pepper powder. J. Food Hyg. Saf., 27, 427-431 (2012). https://doi.org/10.13103/JFHS.2012.27.4.427
- Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26, 1231-1237 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3
- Zhang, X., Huang, X., Ma, Y., Lin, N., Fan, A., Tang, B., Bactericidal behavior of Cu-containing stainless steel surfaces. Appl. Surf. Sci., 258, 10058-10063 (2012). https://doi.org/10.1016/j.apsusc.2012.06.074
- Cao, Z., Zhao, J., Yang, K., Cu-bearing stainless steel reduces cytotoxicity and crystals adhesion after ureteral epithelial cells exposing to calcium oxalate monohydrate. Sci. Rep., 8, 14094 (2018). https://doi.org/10.1038/s41598-018-32388-0
- Ren, L., Yang, K., Guo, L., Chai, H.W., Preliminary study of anti-infective function of a copper-bearing stainless steel. Mater. Sci. Eng. C., 32, 1204-1209 (2012). https://doi.org/10.1016/j.msec.2012.03.009