DOI QR코드

DOI QR Code

Quality Evaluation of Dried Red Pepper After Copper Plate Contact

구리표면 접촉에 의한 건조 고춧가루의 특성 평가

  • Oh, Yeong Ji (Division of Applied Food System, College of Natural Science, Seoul Women's University) ;
  • Park, Sun Young (Division of Applied Food System, College of Natural Science, Seoul Women's University) ;
  • Song, Eiseul (Division of Applied Food System, College of Natural Science, Seoul Women's University) ;
  • Kang, Smee (Division of Applied Food System, College of Natural Science, Seoul Women's University) ;
  • Hong, Jungil (Division of Applied Food System, College of Natural Science, Seoul Women's University)
  • 오영지 (서울여자대학교 자연과학대학 식품응용시스템학부) ;
  • 박선영 (서울여자대학교 자연과학대학 식품응용시스템학부) ;
  • 송이슬 (서울여자대학교 자연과학대학 식품응용시스템학부) ;
  • 강스미 (서울여자대학교 자연과학대학 식품응용시스템학부) ;
  • 홍정일 (서울여자대학교 자연과학대학 식품응용시스템학부)
  • Received : 2020.02.22
  • Accepted : 2020.03.13
  • Published : 2020.04.30

Abstract

Copper possesses antimicrobial properties against certain bacteria and fungi. In this study, changes in microbial population, color and the antioxidant properties of dried red pepper powder (RPP) by contact with the surface of a copper plate were investigated. Lightness of RPP increased after treatment on the copper plate for 2 h at 55℃. The numbers of total aerobic mesophilic bacteria in RPP increased by 0.61 and 0.50 log on the surface of stainless steel and copper plates during 24 h at 37℃, respectively. The population of yeast and mold was reduced by 90% in the RPP treated on both copper and stainless steel plates under the same condition. Yeast and mold were significantly reduced on the copper plate during 2 h at 55℃. Scavenging activities of RPP treated on the copper plate for 24 h at 37℃ against DPPH radical were decreased; those for 2 h at 55℃ against ABTS radical were rather enhanced. The results suggest that copper might be applied in the processing and storage equipment in relation to RPP products for antimicrobial purposes.

본 연구에서는 건조 고춧가루의 가공 및 저장라인에서 구리의 이용가능성을 조사하였다. 구리와 스테인리스강 표면과의 접촉을 통한 고춧가루의 색도 변화를 평가한 결과, 55℃에서 2시간 구리 판에 처리한 시료의 명도가 다소 증가하였다. 구리와 스테인리스강 접촉에 의한 고춧가루 내 미생물 저해는 중온성의 호기성 세균보다 곰팡이 및 효모의 저해에 더 효과적이었고, 55℃에서 2시간 구리 접촉에 의해 곰팡이와 효모의 수는 0.64 log 감소하여 유의적인 효과를 나타내었다. 산화방지 활성은 구리와 스테인리스강 접촉 고춧가루의 DPPH 라디칼 소거활성은 감소한 반면 ABTS 라디칼 소거활성은 증가하였다. 본 연구는 구리 또는 구리와 스테인리스강 등의 합금을 이용하여 고춧가루를 포함한 다양한 분말 식품의 가공 및 저장 과정에 활용할 수 있는 가능성을 제시하고 있다.

Keywords

References

  1. Berners-Price, S.J., Johnson, R.K., Giovenella, A.J., Faucette, L.F., Mirabelli, C.K., Sadler, P.J., Antimicrobial and anticancer activity of tetrahedral, chelated, diphosphine silver (I) complexes: comparison with copper and gold. J. Inorg. Biochem., 33, 285-295 (1988). https://doi.org/10.1016/0162-0134(88)80007-2
  2. Gaetke, L.M., Chow, C.K., Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicol., 189, 147-163 (2003). https://doi.org/10.1016/S0300-483X(03)00159-8
  3. Robertson, T.A., Sanchez, W.Y., Roberts, M.S., Are commercially available nanoparticles safe when applied to the skin? J. Biomed. Nanotech., 6, 452-468 (2010). https://doi.org/10.1166/jbn.2010.1145
  4. Perez-Lopez, B., Merkoci, A., Nanomaterials based biosensors for food analysis applications. Trends Food Sci. Tech., 22, 625-639 (2011). https://doi.org/10.1016/j.tifs.2011.04.001
  5. Kim, J.S., Kuk, E., Yu, K.N., Kim, J.H., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.Y., Kim, Y. K., Antimicrobial effects of silver nanoparticles. Nanomedicine, 3, 95-101 (2007). https://doi.org/10.1016/j.nano.2006.12.001
  6. Yoon, K.Y., Byeon, J.H., Park, J.H., Hwang, J., Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ., 373, 572-575 (2007). https://doi.org/10.1016/j.scitotenv.2006.11.007
  7. Kim, K.J., Sung, W.S., Moon, S.K., Choi, J.S., Kim, J.G., Lee, D.G., Antifungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol., 18, 1482-1484 (2008).
  8. Nasrollahi, A., Pourshamsian, K.H., Mansourkiaee, P., Antifungal activity of silver nanoparticles on some of fungi. Int. J. Nano Dimens., 1, 233 (2011).
  9. Grass, G., Rensing, C., Solioz, M., Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol., 77, 1541-1547 (2011). https://doi.org/10.1128/AEM.02766-10
  10. Vincent, M., Hartemann, P., Engels-Deutsch, M., Antimicrobial applications of copper. Int. J. Hyg. Environ. Health, 219(7), 585-591 (2016). https://doi.org/10.1016/j.ijheh.2016.06.003
  11. Ren, G., Hu, D., Cheng, E.W., Vargas-Reus, M.A., Reip, P., Allaker, R.P., Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents, 33, 587-590 (2009). https://doi.org/10.1016/j.ijantimicag.2008.12.004
  12. Yoon, K.Y., Byeon, J.H., Park, J.H., Hwang, J., Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ., 373, 572-575 (2007). https://doi.org/10.1016/j.scitotenv.2006.11.007
  13. Foster, H.A., Sheel, D.W., Sheel, P., Evans, P., Varghese, S., Rutschke, N., Yates, H.M., Antimicrobial activity of titania/silver and titania/copper films prepared by CVD. J. Photochem. Photobiol. A Chem., 216, 283-289 (2010). https://doi.org/10.1016/j.jphotochem.2010.09.017
  14. Tan, S.J., Yan, Y.K., Lee, P.P.F., Lim, K.H., Copper, gold and silver compounds as potential new anti-tumor metallodrugs. Future Med. Chem., 2, 1591-1608 (2010). https://doi.org/10.4155/fmc.10.234
  15. Faundez, G., Troncoso, M., Navarrete, P., Figueroa, G., Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol., 4, 19 (2004). https://doi.org/10.1186/1471-2180-4-19
  16. Ruparelia, J.P., Chatterjee, A.K., Duttagupta, S.P., Mukherji, S., Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater., 4, 707-716 (2008). https://doi.org/10.1016/j.actbio.2007.11.006
  17. Wheeldon, L.J., Worthington, T., Lambert, P.A., Hilton, A.C., Lowden, C.J., Elliott, T.S., Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory. J. Antimicrob. Chemoth., 62, 522-525 (2008). https://doi.org/10.1093/jac/dkn219
  18. Bogdanovic, U., Lazic, V., Vodnik, V., Budimir, M., Markovic, Z., Dimitrijevic, S., Copper nanoparticles with high antimicrobial activity. Mater. Lett., 128, 75-78 (2014). https://doi.org/10.1016/j.matlet.2014.04.106
  19. Prado, V.J., Vidal, R.A., Duran, C.T., Application of copper bactericidal properties in medical practice. Rev. Med. Chile, 140, 1325-1332 (2012). https://doi.org/10.4067/S0034-98872012001000014
  20. Yun, H., Park, K., Ryu, K.Y., Kim, S.R., Yun, J.C., Kim, B.S., Effects of LED treatment on microbial reduction and quality characteristics of red pepper powder. J. Food Hyg. Saf., 27, 442-448 (2012). https://doi.org/10.13103/JFHS.2012.27.4.442
  21. Woo, H.I., Kim, J.B., Choi, J.H., Kim, E.H., Kim, D.S., Park, K.S., Kim, E.J., Eun, J.B., Om, A.S., Evaluation of the level of microbial contamination in the manufacturing and processing company of red pepper powder. J. Food Hyg. Saf., 27, 427-431 (2012). https://doi.org/10.13103/JFHS.2012.27.4.427
  22. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26, 1231-1237 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3
  23. Zhang, X., Huang, X., Ma, Y., Lin, N., Fan, A., Tang, B., Bactericidal behavior of Cu-containing stainless steel surfaces. Appl. Surf. Sci., 258, 10058-10063 (2012). https://doi.org/10.1016/j.apsusc.2012.06.074
  24. Cao, Z., Zhao, J., Yang, K., Cu-bearing stainless steel reduces cytotoxicity and crystals adhesion after ureteral epithelial cells exposing to calcium oxalate monohydrate. Sci. Rep., 8, 14094 (2018). https://doi.org/10.1038/s41598-018-32388-0
  25. Ren, L., Yang, K., Guo, L., Chai, H.W., Preliminary study of anti-infective function of a copper-bearing stainless steel. Mater. Sci. Eng. C., 32, 1204-1209 (2012). https://doi.org/10.1016/j.msec.2012.03.009