DOI QR코드

DOI QR Code

중학생이 인식하는 학습자-지능형로봇 교사의 관계 형성 요인

An Exploratory study on Student-Intelligent Robot Teacher relationship recognized by Middle School Students

  • 이상숙 (한양대학교 신문방송학과) ;
  • 김진희 (서울대학교 교육학과)
  • Lee, Sang-Soog (Department of Journalism and Mass Communication, Hanyang University) ;
  • Kim, Jinhee (Department of Education, Seoul National University)
  • 투고 : 2020.01.28
  • 심사 : 2020.04.20
  • 발행 : 2020.04.28

초록

본 연구는 중학교 학생이 인식하는 지능형로봇 교사와의 관계형성 요인을 탐색하여 지능형로봇 교사-학습자 간의 관계성을 설명하고자 하였다. 이에, 기존에 개발된 교사-학생 관계 측정 도구를 지능형로봇 교사 맥락에 맞게 재구성하여 283명의 중학교 1학년 학생을 대상으로 설문조사를 진행하였다. 이후, SPSS 23과 Amos 21 프로그램을 활용하여 탐색적 요인분석 및 확인적 요인분석을 실시하였다. 연구결과 중학생이 인식하는 지능형로봇 교사와의 관계형성 요인은 '신뢰감', '유능감', '감정교류', '포용력'이며, 이러한 하위요인들은 중학생이 지능형 로봇과의 관계형성을 설명하는데 근거를 제시하고 있다. 본 연구는 지능형로봇 교사-학습자 간의 유의미한 상호작용 증진을 위한 방안에 대한 논의 뿐 아니라 지능형 로봇을 기반으로 한 교수법을 제시하는 데에도 활용될 수 있을 것이라 판단된다. 또한, 교육용 지능형 로봇 서비스의 이해 및 개발을 지원하는 연구로써 공헌할 것이다. 이상의 연구결과를 바탕으로 추후 연구에서는 지능형 로봇 교사에 대한 다양한 학교 구성원(교사, 학부모 등)의 인식을 조사하여 교육현장에서의 인간-로봇 상호작용 연구가 계속되어야 할 것이다.

This study aimed to explore the relationship between Intelligent Robot Reacher(IRT)-student by examining the factors of their relationship perceived by middle school students. In doing so, we developed questionnaires based on the existing teacher-student relationship scale and conducted an online survey of 283 first graders in middle school. The collected date were analyzed using exploratory factor analyses with SPSS 23 and confirmatory factor analysis with Amos 21. The study findings identified four factors of IRT-student relationship namely "trust", "competence", "emotional exchange", and "tolerance". It is expected that the study can be used to discuss ways to enhance educationally significant interaction between students-IRT and teaching methods using intelligent robots(IRs). Also, the study will contribute to the understanding and development of various services using IRs. Based on the study finidngs, future studies should investigate the perception of various education stockholders (teachers, parets, etc) on IRT to elevate the Human-Robot Interaction in the education field.

키워드

참고문헌

  1. Ministry of Education (2019). A plan for internalization of English education in elementary schools.
  2. H. M. Yoon & E. J. Hyun. (2012) Young Children's Perception of Intelligent Service Robots and Child-Robot Interactions. Korean Journal of Child Studies 33(1), 237-259 https://doi.org/10.5723/KJCS.2012.33.1.237
  3. T. Iio, et al. (2019). Improvement of Japanese adults' English speaking skills via experiences speaking to a robot. Journal of Computer Assisted Learning, 35(2), 228-245. https://doi.org/10.1111/jcal.12325
  4. B. I. Edwards & A. D. Cheok (2018). Why not robot teachers: artificial intelligence for addressing teacher shortage. Applied Artificial Intelligence, 32(4), 345-360. https://doi.org/10.1080/08839514.2018.1464286
  5. J. Han. (2012). Emerging technologies: Robot assisted language learning. Language Learning & Technology, 16(3), 1-9
  6. S. Song. (2019). A Study of the Task of the Ethics Education of Human Nature in the Relationship between Humans and AI Robotics. Journal of Korean Ethics Studies, 126(1), 91-115.
  7. H. Cho, K. Park, J. Han, D. Min, & K. Ko. (2008). Education+Robots: the Vision and the Action Plans. Journal of KIISE, 26(4), 55-64.
  8. S. Serholt et al. (2014. 10). Teachers' views on the use of empathic robotic tutors in the classroom. In Robot and Human Interactive Communication, The 23rd IEEE International Symposium on, Edinburgh, UK.
  9. J. Solis, M. Bergamasco, K. Chida, S. Isoda, & A. Takanishi. (2004). The Anthropomorphic Flutist Robot WF-4 Teaching Flute Playing to Beginner Students. Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA, USA
  10. J.C. Ban, & K. Jin. (2010). Effectiveness of Using Autonomous Intelligent Robots for English Teachers on Students' Achievement and Affective Traits: A Case Study in an Elementary School. Journal of Curriculum Evaluation, 13(2), 389-410. https://doi.org/10.29221/jce.2010.13.2.389
  11. A. Billard, B. Robins, J. Nadel, & K. Dautenhahn. (2007). Building Robota, a mini-humanoid robot for the rehabilitation of children with autism. Assistive Technology, 19(1), 37-49. https://doi.org/10.1080/10400435.2007.10131864
  12. S. Brave, C. Nass, & K. Hutchinson. (2005). Computers that care: Investigating the effects of orientation of emotion exhibited by an embodied computer agent. International Journal of Humane Computer Studies, 62, 161-178. https://doi.org/10.1016/j.ijhcs.2004.11.002
  13. R. E. Ferdig & P. Mishra. (2004). Emotional responses to computers: Experiences in unfairness, anger, and spite. Journal of Educational Multimedia and Hypermedia, 13, 143-161.
  14. Y. Kim & S. S. Sundar. (2012). Anthropomorphism of computers: Is it mindful or mindless? Computers in Human Behavior, 28, 241-250. https://doi.org/10.1016/j.chb.2011.09.006
  15. C. Edwards, A. Edwards, P. R. Spence, & D. Westerman. (2016). Initial interaction expectations with robots: Testing the human-to-human interaction script. Communication Studies, 67(2), 227-238. https://doi.org/10.1080/10510974.2015.1121899
  16. P. R. Spence, D. Westerman, C. Edwards, & A. Edwards. (2014). Welcoming our robot overlords: Initial expectations about interaction with a robot. Communication Research Reports, 31, 272-280. https://doi.org/10.1080/08824096.2014.924337
  17. C. Nass & Y. Moon. (2000). Machines and mindlessness: Social responses to computers. Journal of Social Issues, 56, 81-103. https://doi.org/10.1111/0022-4537.00153
  18. B. Reeves & C. Nass. (1996). Media equation: How people treat computers, television, and new media like real people and places. New York: Cambridge University Press.
  19. C. Nass, B. J. Fogg, & Y. Moon. (1996). Can computers be teammates? International Journal of Human-Computer Studies, 45, 669-678. https://doi.org/10.1006/ijhc.1996.0073
  20. Tyler. L. L. (1964). The conception of an ideal teacher-student relationship. Journal of Educational Research, 58(3), 112-117. https://doi.org/10.1080/00220671.1964.10883185
  21. Pianta, R. C. (1991). The student-teacher relationship scale. Unpublished Dissertation. University of Virginia, Charlettesvill, VA.
  22. E. L. Zi, S. G. Baek, S. H. Chae, & H. Seol. (2003). Development and Validation of the Student-Teacher Relationship Scale. Journal of Education Evaluation, 16, 25-42.
  23. J. Oh, D. Kim & C. Shin. (2013) A Search for Intimacy Factors on Teacher-Students' Relationships in Middle School Physical Education Classes. Journal of Learner-Centered Curriculum and Instruction, 13(1), 81-102.
  24. K. H. Seo. (2004). The perspectives and conceptions about good instructional practice: An interview study of teachers and students. The Journal of Curriculum Studies, 22(4), 165-187.
  25. J. F. Hair, W. C. Black, B. J. Babin, R. E. Anderson, & R. L. Tatham. (2006). Multivariate data analysis. Pearson Prentice Hall Upper Saddle River.
  26. M. Brown & R. Cudeck. (1993). Alternative ways of assessing model fit. Testing structural equation models, 154, 136.
  27. F. J. Martinez‐Lopez, J. C. Gazquez‐Abad, & C. M. Sousa. (2013). Structural equation modelling in marketing and business research. European Journal of Marketing. 47(1/2), 115-152. https://doi.org/10.1108/03090561311285484
  28. J. C. Anderson & D. W. Gerbing. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological bulletin, 103(3), 411. https://doi.org/10.1037//0033-2909.103.3.411
  29. .N. M. Shin & S. A. Kim. (2007). What do robots have to do with student Learning?. Journal of Korean Association for Educational Information and Media, 13(3), 79-99.
  30. V. Kwok. (2015). Robot vs. human teacher: Instruction in the digital age for ESL learners. English Language Teaching, 8(7), 157-163.
  31. J. H. Park & N. M. Shin (2017). Students' perceptions of Artificial Intelligence Technology and Artificial Intelligence Teachers. The Journal of Korean Teacher Education, 34(2), 169-192. https://doi.org/10.24211/TJKTE.2017.34.2.169
  32. C. Mancini. et al, (2010). 'Contravision: exploring users' reactions to futuristic technology, Proceedings of the 28th International conference on Human factors in computing systems, Atlanta, GA, USA.