DOI QR코드

DOI QR Code

Effect of Pressing Process on the High-Temperature Stability of Yttria-Stabilized Zirconia Ceramic Material in Molten Salt of CaCl2-CaF2-CaO

CaCl2-CaF2-CaO 용융염에서 YSZ 세라믹의 고온 안정성에 미치는 성형공정의 영향

  • Kim, Wan-Bae (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kwon, Suk-Cheol (Department of Materials Science and Engineering, Chungnam National University) ;
  • Cho, Soo-Haeng (Rapidly Solidified Materials Research Center (RASOM), Chungnam National University) ;
  • Lee, Jong-Hyeon (Department of Materials Science and Engineering, Chungnam National University)
  • 김완배 (충남대학교 신소재공학과) ;
  • 권숙철 (충남대학교 신소재공학과) ;
  • 조수행 (충남대학교 급속응고신소재연구소) ;
  • 이종현 (충남대학교 신소재공학과)
  • Received : 2020.02.28
  • Accepted : 2020.03.23
  • Published : 2020.04.27

Abstract

The high-temperature stability of YSZ specimens fabricated by die pressure and cold isostatic press (CIP) is investigated in CaCl2-CaF2-CaO molten salt at 1,150 ℃. The experimental results are as follows: green density 46.7 % and 50.9 %; sintering density 93.3 % and 99.3 % for die press and CIP, respectively. YSZ foremd by CIP exhibits higher stability than YSZ formed by die press due to denseness dependency after high-temperature stability test. YSZ shows peaks mainly attributed to CaZrO3, with a small t-ZrO2 peak, unlike the high-intensity tetragonal-ZrO2 (t-ZrO2) peak observed for the asreceived specimen. The t-ZrO2 phase of YSZ is likely stabilized by Y2O3, and the leaching of Y2O3 results in phase transformation from t-ZrO2 to m-ZrO2. CaZrO3 likely forms from the reaction between CaO and m-ZrO2. As the exposure time increases, more CaZrO3 is observed in the internal region of YSZ, which could be attributed to the inward diffusion of molten salt and outward diffusion of the stabilizer (Y2O3) through the pores. This results in greater susceptibility to phase transformation and CaZrO3 formation. To use SOM anodes for the electroreduction of various metals, YSZ stability must be improved by adjusting the high-density in the forming process.

Keywords

References

  1. S. Das, JOM, 60, 63 (2008). https://doi.org/10.1007/s11837-008-0151-7
  2. A. Krishnan, X. G. Lu and U. B. Pal, Metall. Mater. Trans. B, 36, 463 (2005). https://doi.org/10.1007/s11663-005-0037-9
  3. S. Selvasekarapandian, M. S. Bhuvaneswari, M. Vijayakumar, C. S. Ramya and P. C. Angelo, J. Eur. Ceram. Soc., 25, 2573 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.104
  4. D. J. L. Brett, A. Atkinson, N. P. Brandon and S. J. Skinner, Chem. Soc. Rev., 37, 1568 (2008). https://doi.org/10.1039/b612060c
  5. Y. M. Gao, B. Wang, S. B. Wang and S. Peng, J. Min. Metall. B Metall., 49 B, 49 (2013).
  6. A. Aytimur, I. Uslu, S. Kocyigit and F. Ozcan, Ceram. Int., 38, 3851 (2012). https://doi.org/10.1016/j.ceramint.2012.01.035
  7. A. E. McHale, Phase Diagrams for Ceramists Annual 91/Phan91, 146, J Am Ceram Soc, inc. Westervile, USA (1991).
  8. J. Milshtein, E. Gratz, S. Pati, A. C. Powell and U. B. Pal, J. Min. Metall. B Metall., 49 B, 183 (2013).
  9. R. O. Suzuki, J. Phys. Chem. Solids, 66, 461 (2005). https://doi.org/10.1016/j.jpcs.2004.06.041
  10. D. T. L. Alexander, C. Schwandt and D. J. Fray, Acta Mater., 54, 29334 (2006).
  11. O. Takeda, T. H. Okabe, Metall. Mater. Trans. B, 1, 160 (2014).
  12. K. M. S. Chowdhury, S. A. Akbar, S. Kapileshwar and J. R. Schorr, J. Electrochem. Soc., 148, 146 (2001).
  13. U. B. Pal, D. E. Woolley and G. B. Kenney, JOM, 53, 32 (2001).
  14. K. Ajay, Thesis (Ph.D.), Boston University, Boston (2006).
  15. S. Li, X. Zou, K. Zheng, X. Lu, Q. Xu, C. Chen and Z. Zhou, J. Alloys Compd., 727, 1243 (2017). https://doi.org/10.1016/j.jallcom.2017.08.213
  16. U. B. Pal and A. C. Powell, JOM, 59, 44 (2007).
  17. X. Lu, X. Zou, C. Li, Q. Zhong, W. Ding and Z. Zhou, Metall. Mater. Trans. B, 43, 503 (2012). https://doi.org/10.1007/s11663-012-9633-7
  18. X. Zou, X. Lu, C. Li and Z. Zhou, Electrochim Acta, 55, 5173 (2010). https://doi.org/10.1016/j.electacta.2010.04.032
  19. X. Zou, X. Lu, Z. Zhou, C. Li and W. Ding, Electrochim. Acta, 56, 8430 (2011). https://doi.org/10.1016/j.electacta.2011.07.026
  20. B. Zhao, X. Lu, Q. Zhong, C. Li and S. Chen, Electrochim. Acta, 55, 2996 (2010). https://doi.org/10.1016/j.electacta.2010.01.008
  21. S. C. Kwon, S. H. Cho, Hayk H. Nersisyan, J. H. Lee, J. S. Kang and J. H. Lee, Am. Ceram. Soc., 101, 2074 (2018). https://doi.org/10.1111/jace.15377
  22. U. B. Pal, JOM, 60, 43 (2008). https://doi.org/10.1007/s11837-008-0017-z
  23. A. Martin, D. Lambertin, J. -C. Poignet, M. Allibert, G. Bourges, L. Pescayre and J. Fouletier, JOM, 55, 52 (2003).
  24. X. Guan and U. B. Pal, Prog. Nat. Sci. Mater., 25, 591 (2015). https://doi.org/10.1016/j.pnsc.2015.11.004
  25. X. Su, X. G. Lu, C. H. Li, W. Z. Ding, X. L. Zou, Y. H. Gao and Q. D. Zhong, Int. J. Hydrogen Energy, 36, 4573 (2011). https://doi.org/10.1016/j.ijhydene.2010.04.098
  26. G. Z. Chen, D. J. Fray and T. W. Farthing, Nature, 407, 361 (2000). https://doi.org/10.1038/35030069
  27. B. U. Yoo, S. C. Kwon, S. H. Cho, Hayk H. Nersisyan and J. H. Lee, J. Alloys Compd., 771, 924 (2019). https://doi.org/10.1016/j.jallcom.2018.09.001
  28. M. Suput, R. Delucas, S. Pati, G. Ye, U. Pal and A. C. Powell, Miner. Process Extract Metall., 117, 118 (2008). https://doi.org/10.1179/174328508X290911
  29. R. Gemmen, H. Abernathny, K. Gerdes, M. Koslowske, W. McPhee and T. Tao, Fundamentals of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC) Operation, in: P. Bansal, P. Singh, D. Singh, J. Salem (Eds), Ceramic Engineering and Science Proceedings, Wiley and Sons, Hoboken, NJ, p. 37-46 (2009).
  30. C. J. Stournaras, A. Tsetsekou, T. Zambetakis, C. G. Kontoyannis and G. Carountzos, J. Mater. Sci., 30, 4375 (1995). https://doi.org/10.1007/BF00361520
  31. C. G. Kontoyannis, G. Carountzos, C. J. Stournaras and A. Tsetsekou, J. Mater. Sci. Lett., 15, 222 (1996). https://doi.org/10.1007/BF00274456
  32. A. Martin, J. C. Poignet, J. Fouletier, M. Allibert, D. Lambertin and G. Bourges, J. Appl. Electrochem., 40, 533 (2010). https://doi.org/10.1007/s10800-009-0025-x
  33. E. S. Gratz, J. D. Milshtein and U. Pal, J. Am. Ceram. Soc., 96, 3279 (2013). https://doi.org/10.1111/jace.12449
  34. J. Xu, B. Lo, Y. Jiang, U. Pal and S. Basu, J. Eur. Ceram. Soc., 34, 3887 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.04.028
  35. E. S. Gratz, J. D. Milshtein and U. B. Pal, J. Am. Ceram. Soc., 96, 3279 (2013). https://doi.org/10.1111/jace.12449
  36. R. P. Ingel and D. Lewis III, J. Am. Ceram. Soc., 69, 325 (1986). https://doi.org/10.1111/j.1151-2916.1986.tb04741.x
  37. Z. Xu, L. He, R. Mu, S. He, G. Huang and X. Cao, Surf. Coat. Technol., 204, 3652 (2010). https://doi.org/10.1016/j.surfcoat.2010.04.044
  38. A. P. Raheleh, S. R. Reza, M. Reza and J. Hossein, Ceram. Int., 38, 6613 (2012). https://doi.org/10.1016/j.ceramint.2012.05.047