Acknowledgement
The authors received no financial support for the research, authorship and publication of this article.
References
- Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039
- Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., Int. J., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403
- Anderson, N., Hartschuh, A., Cronin, S. and Novotny, L. (2005), "Nanoscale vibrational analysis of single-walled carbon nanotubes", J. Am. Chem. Soc., 127(8), 2533-2537. https://doi.org/10.1021/ja045190i
- Aydogdu, M. and Arda, M. (2016), "Forced vibration of nanorods using nonlocal elasticity", Adv. Nano Res., Int. J., 4(4), 265-279. https://doi.org/10.12989/anr.2016.4.4.265
- Barooti, M.M., Safarpour, H. and Ghadiri, M. (2017), "Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations", Eur. Phys. J. Plus., 132, p. 6. https://doi.org/10.1140/epjp/i2017-11275-5
- Barretta, R. and de Sciarra, F.M. (2019), "Variational nonlocal gradient elasticity for nano-beams", Int. J. Eng. Sci., 143, 73-91. https://doi.org/10.1016/j.ijengsci.2019.06.016
- Barretta, R., Faghidian, S.A. and de Sciarra, F.M. (2019a), "Stressdriven nonlocal integral elasticity for axisymmetric nano-plates", Int. J. Eng. Sci., 136, 38-52. https://doi.org/10.1016/j.ijengsci.2019.01.003
- Barretta, R., Faghidian, S.A. and de Sciarra, F.M. (2019b), "A consistent variational formulation of Bishop nonlocal rods", Continuum Mech. Thermodyn., 1-13. https://doi.org/10.1007/s00161-019-00843-6
- Barretta, R., Faghidian, S.A., de Sciarra, F.M. and Pinnola, F.P. (2019c), "Timoshenko nonlocal strain gradient nanobeams: Variational consistency, exact solutions and carbon nanotube Young moduli", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2019.1683660
- Barretta, R., de Sciarra, F.M. and Vaccaro, M.S. (2019d), "On nonlocal mechanics of curved elastic beams", Int. J. Eng. Sci., 144, 103140. https://doi.org/10.1016/j.ijengsci.2019.103140
- Barretta, R., Faghidian, S.A., de Sciarra, F.M., Penna, R. and Pinnola, F.P. (2020), "On torsion of nonlocal Lam strain gradient FG elastic beams", Compos. Struct., 233, 111550. https://doi.org/10.1016/j.compstruct.2019.111550
- Basirjafari, S., Esmaielzadeh Khadem, S. and Malekfar, R. (2013a), "Validation of shell theory for modeling the radial breathing mode of a single-walled carbon nanotube", Int. J. Eng. Trans. A, 26(4), 447-454.
- Basirjafari, S., Khadem, S.E. and Malekfar, R. (2013b), "Radial breathing mode frequencies of carbon nanotubes for determination of their diameters", Curr. Appl. Phys., 13, 599-609. https://doi.org/10.1016/j.cap.2012.11.001
- Bouaouina, B., Besnard, A., Abaidia, S.E., Airoudj, A. and Bensouici, F. (2018), "Correlation between mechanical and microstructural properties of molybdenum nitride thin films deposited on silicon by reactive RF magnetron discharge", Surf. Coat. Technol., 333, 32-38. https://doi.org/10.1016/j.surfcoat.2017.10.028
- Cai, K., Li, Y., Qin, Q.H. and Yin, H. (2014), "Gradient less temperature-driven rotating motor from a double-walled carbon nanotube", Nanotechnology, 25, 1-6. https://doi.org/10.1088/0957-4484/25/50/505701
- Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., Int. J., 3(4), 193-206. https://doi.org/10.12989/anr.2015.3.4.193
- Civalek, O. (2008), "Vibration analysis of conical panels using the method of discrete singular convolution", Commun. Numer. Meth. Eng., 24, 169-181. https://doi.org/10.1002/cnm.961
- Civalek, O. and Acar, M.H. (2007), "Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations", Int. J. Press. Vessel Pip., 84(9), 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001
- Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Mathe. Computat., 289, 335-352. https://doi.org/10.1016/j.amc.2016.05.034
- De Clerck, J. (2014), Topics in Modal Analysis I, Springer-Verlag, New York, USA.
- Demir, C. and Civalek, O. (2017a), "A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix", Compos. Struct., 168, 872-884. https://doi.org/10.1016/j.compstruct.2017.02.091
- Demir, C. and Civalek, O. (2017b), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016
- Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory", Adv. Nano Res., Int. J., 6(2), 93-112. https://doi.org/10.12989/anr.2018.6.2.093
- Ebrahimi, F. and Fardshad, R.E. (2018), "Modeling the size effect on vibration characteristics of functionally graded piezoelectric nanobeams based on Reddy's shear deformation beam theory", Adv. Nano Res., Int. J., 6(2), 113-133. https://doi.org/10.12989/anr.2018.6.2.113
- Ebrahimi, F. and Shaghaghi, G.R. (2015a), "Vibration analysis of an initially pre-stressed rotating carbon nanotube employing differential transform method", Int. J. Adv. Des. Manufac. Tech., 8(4), 13-21.
- Ebrahimi, F. and Shaghaghi, G.R. (2015b), "Vibration analysis of an initially pre-stressed rotating carbon nanotube employing differential transform method", Int. J. Adv. Des. Manufac. Tech., 8(4), 13-21.
- Ebrahimi, F., Karimiasl, M., Civalek, O. and Vinyas, M. (2019), "Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams", Adv. Nano Res., Int. J., 7(2), 77-88. https://doi.org/10.12989/anr.2019.7.2.077
- Eringen, A.C. (1972a), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X
- Eringen, A.C. (1972b), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Farajpour, M.R., Shahidi, A.R. and Farajpour, A. (2018), "A nonlocal continuum model for the biaxial buckling analysis of composite nanoplates with shape memory alloy nanowires", Mat. Res. Exp., 5(3), 035026. https://doi.org/10.1088/2053-1591/aab3a9
- Ghafarian, M. and Ariaei, A. (2016), "Free vibration analysis of a multiple rotating nano-beams system based on the Eringen nonlocal elasticity theory", J. Appl. Phys., 120, 054301. https://doi.org/10.1063/1.4959991
- Ghavanloo, E., Rafii-Tabar, H. and Fazelzadeh, S.A. (2019), Essential Concepts from Nonlocal Elasticity Theory. In: Computational Continuum Mechanics of Nanoscopic Structures, Springer Tracts in Mechanical Engineering, Springer, Cham.
- Gopalakrishnan, S. and Narendar, S. (2013), Wave Propagation in Nanostructures, Nonlocal Continuum Mechanism Formulations, Springer, USA.
- Gupta, S.S. and Batra, R.C. (2008), "Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes", Comput. Mat. Sci., 43(4), 715-723. https://doi.org/10.1016/j.commatsci.2008.01.032
- Gupta, S.S., Bosco, F.G. and Batra, R.C. (2010), "Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and in extensional modes of vibration", Comput. Mat. Sci., 47, 1049-1059. https://doi.org/10.1016/j.commatsci.2009.12.007
- Hayat, T., Haider, F., Muhammad, T. and Alsaedi, A. (2017), "Three-dimensional rotating flow of carbon nanotubes with Darcy-Forchheimer porous medium", PLoS ONE, 12(7), e0179576. 10.1371/journal.pone.0179576
- Huang, J. and Han, Q. (2016), "Controllable nanoscale rotating actuator system based on carbon nanotube and graphene", Nanotechnology, 27, 155501. https://doi.org/10.1088/0957-4484/27/15/155501
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0
- Khodabakhshi, M. and Moosavi, A. (2017), "Unidirectional Transport of Water Through an Asymmetrically Charged Rotating CNT", J. Phys. Chem. C, 121(42), 23649-23658. https://doi.org/10.1021/acs.jpcc.7b06003
- Kotwal, T., Pawaskar, D.N. and Inamdar, M.M. (2018), "Effect of nonlinear damping on whirling motion of carbon nanotube oscillators", Proceedings of the 25th International Congress on Sound and Vibration 2018, ICSV 2018, pp. 1896-1903.
- Kral, P. and Sadeghpour, H.R. (2002), "Laser spinning of nanotubes: A path to fast-rotating microdevices", Phys. Rev. B, 65, 161401. https://doi.org/10.1103/PhysRevB.65.161401
- Kroner, E. (1963), "On the physical reality of torque stresses in continuum mechanics", Int. J. Eng. Sci., 1(2), 263-278. https://doi.org/10.1016/0020-7225(63)90037-5
- Mirtalaie, S.H. and Hajabasi, M.A. (2017), "Nonlinear axiallateral-torsional free vibrations analysis of Rayleigh rotating shaft", Arch. Appl. Mech., 87(9), 1465-1494. https://doi.org/10.1007/s00419-017-1265-6
- Nahvi, H. and Boroojeni, M.E. (2013), "Free vibrations of a rotating single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Acta Phys. Polon. A, 123, 304-306. https://doi.org/10.12693/APhysPolA.123.304
- Narendar, S. (2012), "Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanotube with consideration of transverse shear deformation and rotary inertia", Appl. Math. Comput., 219, 1232-1243. https://doi.org/10.1016/j.amc.2012.07.032
- Natsuki, T., Melvin, G.J.H. and Ni, Q.Q. (2013), "Vibrational frequencies and raman radial breathing modes of multi-walled carbon nanotubes based on continuum mechanics", J. Mater. Sci. Res., 2(4), 1-11. https://doi.org/10.5539/jmsr.v2n4p1
- Numanoglu, H.M., Akgoz, B. and Civalek, O. (2018), "On dynamic analysis of nanorods", Int. J. Eng. Sci., 130, 33-50. https://doi.org/10.1016/j.ijengsci.2018.05.001
- Ouakad, H.M., El-Borgi, S., Mousavi, S.M. and Friswell, M.I. (2018), "Static and dynamic response of CNT nanobeam using nonlocal strain and velocity gradient theory", Appl. Math. Model., 62, 207-222. https://doi.org/10.1016/j.apm.2018.05.034
- Pinnola, F.P., Faghidian, S.A., Barretta, R. and de Sciarra, F.M. (2020), "Variationally consistent dynamics of nonlocal gradient elastic beams", Int. J. Eng. Sci., 149, 103220. https://doi.org/10.1016/j.ijengsci.2020.103220
- Pradhan, S.C. and Murmu, T. (2010), "Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever", Phys. E, 42, 1944-1949. https://doi.org/10.1016/j.physe.2010.03.004
- Rao, S.S. (2000), Mechanical Vibrations, Massachusetts; Addison-Wesley Publishing Company, New York, USA.
- Romano, G., Barretta, R., Diaco, M. and de Sciarra, F.M. (2017), "Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams", Int. J. Mech. Sci., 121, 151-156. https://doi.org/10.1016/j.ijmecsci.2016.10.036
- Shojaeefard, M.H., Saeidi Googarchin, H., Mahinzare, M. and Adibi, M. (2019), "Vibration and buckling analysis of a rotary functionally graded piezomagnetic nanoshell embedded in viscoelastic media", J. Intel. Mater. Syst. Struct., 29(11), 2344-2361. https://doi.org/10.1177/1045389X18770856
- Surana, K.S., Mysore, D. and Reddy, J.N. (2019), "Non-classical continuum theories for solid and fluent continua and some applications", Int. J. Smart Nano Mater., 10(1), 28-89. https://doi.org/10.1080/19475411.2018.1530700
- Torkaman-Asadi, M.A., Rahmanian, M. and Firouz-Abadi, R.D. (2015), "Free vibrations and stability of high-speed rotating carbon nanotubes partially resting on Winkler foundations", Compos. Struct., 126, 52-61. https://doi.org/10.1016/j.compstruct.2015.02.037
- Tu, Q., Yang, Q., Wang, H. and Li, S. (2016), "Rotating carbon nanotube membrane filter for water desalination", Sci. Rep., 6, 26183. https://doi.org/10.1038/srep26183
- Xu, L. and Yang, Q. (2015), "Multi-field coupled dynamics for a micro beam", Mech. Based Des. Struct. Mach., 43, 57-73. https://doi.org/10.1080/15397734.2014.928221
- Yang, Z., Nakajima, M., Shen, Y. and Fukuda, T. (2011), "Nanogyroscope assembly using carbon nanotube based on nanorobotic manipulation", Proceedings of 2011 International Symposium on Micro-Nano Mechatronics and Human Science, IEEE, pp. 309-314. https://doi.org/10.1109/MHS.2011.6102199
- Zhu, X. and Li, L. (2017a), "Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity", Int. J. Mech. Sci., 133, 639-650. https://doi.org/10.1016/j.ijmecsci.2017.09.030
- Zhu, X. and Li, L. (2017b), "Twisting statics of functionally graded nanotubes using Eringen's nonlocal integral model", Compos. Struct., 178, 87-96. https://doi.org/10.1016/j.compstruct.2017.06.067
- Zhu, X. and Li, L. (2019), "A well-posed Euler-Bernoulli beam model incorporating nonlocality and surface energy effect", Appl. Math. Mech.-Engl. Ed., 40, 1561-1588. https://doi.org/10.1007/s10483-019-2541-5
Cited by
- Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157