DOI QR코드

DOI QR Code

Forward and backward whirling of a spinning nanotube nano-rotor assuming gyroscopic effects

  • Ouakad, Hassen M. (Department of Mechanical & Industrial Engineering, Sultan Qaboos University) ;
  • Sedighi, Hamid M. (Mechanical Engineering Department, Faculty of Engineering, Shahid Chamran University of Ahvaz) ;
  • Al-Qahtani, Hussain M. (Mechanical Engineering Department, King Fahd University of Petroleum and Minerals)
  • Received : 2019.12.04
  • Accepted : 2020.02.27
  • Published : 2020.04.25

Abstract

This work examines the fundamental vibrational characteristics of a spinning CNT-based nano-rotor assuming a nonlocal elasticity Euler-Bernoulli beam theory. The rotary inertia, gyroscopic, and rotor mass unbalance effects are all taken into consideration in the beam model. Assuming a nonlocal theory, two coupled 6th-order partial differential equations governing the vibration of the rotating SWCNT are first derived. In order to acquire the natural frequencies and dynamic response of the nano-rotor system, the nonlinear equations of motion are numerically solved. The nano-rotor system frequency spectrum is shown to exhibit two distinct frequencies: one positive and one negative. The positive frequency is known as to represent the forward whirling mode, whereas the negative characterizes the backward mode. First, the results obtained within the framework of this numerical study are compared with few existing data (i.e., molecular dynamics) and showed an overall acceptable agreement. Then, a thorough and detailed parametric study is carried out to study the effect of several parameters on the nano-rotor frequencies such as: the nanotube radius, the input angular velocity and the small scale parameters. It is shown that the vibration characteristics of a spinning SWCNT are significantly influenced when these parameters are changed.

Keywords

Acknowledgement

The authors received no financial support for the research, authorship and publication of this article.

References

  1. Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039
  2. Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., Int. J., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403
  3. Anderson, N., Hartschuh, A., Cronin, S. and Novotny, L. (2005), "Nanoscale vibrational analysis of single-walled carbon nanotubes", J. Am. Chem. Soc., 127(8), 2533-2537. https://doi.org/10.1021/ja045190i
  4. Aydogdu, M. and Arda, M. (2016), "Forced vibration of nanorods using nonlocal elasticity", Adv. Nano Res., Int. J., 4(4), 265-279. https://doi.org/10.12989/anr.2016.4.4.265
  5. Barooti, M.M., Safarpour, H. and Ghadiri, M. (2017), "Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations", Eur. Phys. J. Plus., 132, p. 6. https://doi.org/10.1140/epjp/i2017-11275-5
  6. Barretta, R. and de Sciarra, F.M. (2019), "Variational nonlocal gradient elasticity for nano-beams", Int. J. Eng. Sci., 143, 73-91. https://doi.org/10.1016/j.ijengsci.2019.06.016
  7. Barretta, R., Faghidian, S.A. and de Sciarra, F.M. (2019a), "Stressdriven nonlocal integral elasticity for axisymmetric nano-plates", Int. J. Eng. Sci., 136, 38-52. https://doi.org/10.1016/j.ijengsci.2019.01.003
  8. Barretta, R., Faghidian, S.A. and de Sciarra, F.M. (2019b), "A consistent variational formulation of Bishop nonlocal rods", Continuum Mech. Thermodyn., 1-13. https://doi.org/10.1007/s00161-019-00843-6
  9. Barretta, R., Faghidian, S.A., de Sciarra, F.M. and Pinnola, F.P. (2019c), "Timoshenko nonlocal strain gradient nanobeams: Variational consistency, exact solutions and carbon nanotube Young moduli", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2019.1683660
  10. Barretta, R., de Sciarra, F.M. and Vaccaro, M.S. (2019d), "On nonlocal mechanics of curved elastic beams", Int. J. Eng. Sci., 144, 103140. https://doi.org/10.1016/j.ijengsci.2019.103140
  11. Barretta, R., Faghidian, S.A., de Sciarra, F.M., Penna, R. and Pinnola, F.P. (2020), "On torsion of nonlocal Lam strain gradient FG elastic beams", Compos. Struct., 233, 111550. https://doi.org/10.1016/j.compstruct.2019.111550
  12. Basirjafari, S., Esmaielzadeh Khadem, S. and Malekfar, R. (2013a), "Validation of shell theory for modeling the radial breathing mode of a single-walled carbon nanotube", Int. J. Eng. Trans. A, 26(4), 447-454.
  13. Basirjafari, S., Khadem, S.E. and Malekfar, R. (2013b), "Radial breathing mode frequencies of carbon nanotubes for determination of their diameters", Curr. Appl. Phys., 13, 599-609. https://doi.org/10.1016/j.cap.2012.11.001
  14. Bouaouina, B., Besnard, A., Abaidia, S.E., Airoudj, A. and Bensouici, F. (2018), "Correlation between mechanical and microstructural properties of molybdenum nitride thin films deposited on silicon by reactive RF magnetron discharge", Surf. Coat. Technol., 333, 32-38. https://doi.org/10.1016/j.surfcoat.2017.10.028
  15. Cai, K., Li, Y., Qin, Q.H. and Yin, H. (2014), "Gradient less temperature-driven rotating motor from a double-walled carbon nanotube", Nanotechnology, 25, 1-6. https://doi.org/10.1088/0957-4484/25/50/505701
  16. Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., Int. J., 3(4), 193-206. https://doi.org/10.12989/anr.2015.3.4.193
  17. Civalek, O. (2008), "Vibration analysis of conical panels using the method of discrete singular convolution", Commun. Numer. Meth. Eng., 24, 169-181. https://doi.org/10.1002/cnm.961
  18. Civalek, O. and Acar, M.H. (2007), "Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations", Int. J. Press. Vessel Pip., 84(9), 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001
  19. Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Mathe. Computat., 289, 335-352. https://doi.org/10.1016/j.amc.2016.05.034
  20. De Clerck, J. (2014), Topics in Modal Analysis I, Springer-Verlag, New York, USA.
  21. Demir, C. and Civalek, O. (2017a), "A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix", Compos. Struct., 168, 872-884. https://doi.org/10.1016/j.compstruct.2017.02.091
  22. Demir, C. and Civalek, O. (2017b), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016
  23. Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory", Adv. Nano Res., Int. J., 6(2), 93-112. https://doi.org/10.12989/anr.2018.6.2.093
  24. Ebrahimi, F. and Fardshad, R.E. (2018), "Modeling the size effect on vibration characteristics of functionally graded piezoelectric nanobeams based on Reddy's shear deformation beam theory", Adv. Nano Res., Int. J., 6(2), 113-133. https://doi.org/10.12989/anr.2018.6.2.113
  25. Ebrahimi, F. and Shaghaghi, G.R. (2015a), "Vibration analysis of an initially pre-stressed rotating carbon nanotube employing differential transform method", Int. J. Adv. Des. Manufac. Tech., 8(4), 13-21.
  26. Ebrahimi, F. and Shaghaghi, G.R. (2015b), "Vibration analysis of an initially pre-stressed rotating carbon nanotube employing differential transform method", Int. J. Adv. Des. Manufac. Tech., 8(4), 13-21.
  27. Ebrahimi, F., Karimiasl, M., Civalek, O. and Vinyas, M. (2019), "Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams", Adv. Nano Res., Int. J., 7(2), 77-88. https://doi.org/10.12989/anr.2019.7.2.077
  28. Eringen, A.C. (1972a), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X
  29. Eringen, A.C. (1972b), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  30. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  31. Farajpour, M.R., Shahidi, A.R. and Farajpour, A. (2018), "A nonlocal continuum model for the biaxial buckling analysis of composite nanoplates with shape memory alloy nanowires", Mat. Res. Exp., 5(3), 035026. https://doi.org/10.1088/2053-1591/aab3a9
  32. Ghafarian, M. and Ariaei, A. (2016), "Free vibration analysis of a multiple rotating nano-beams system based on the Eringen nonlocal elasticity theory", J. Appl. Phys., 120, 054301. https://doi.org/10.1063/1.4959991
  33. Ghavanloo, E., Rafii-Tabar, H. and Fazelzadeh, S.A. (2019), Essential Concepts from Nonlocal Elasticity Theory. In: Computational Continuum Mechanics of Nanoscopic Structures, Springer Tracts in Mechanical Engineering, Springer, Cham.
  34. Gopalakrishnan, S. and Narendar, S. (2013), Wave Propagation in Nanostructures, Nonlocal Continuum Mechanism Formulations, Springer, USA.
  35. Gupta, S.S. and Batra, R.C. (2008), "Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes", Comput. Mat. Sci., 43(4), 715-723. https://doi.org/10.1016/j.commatsci.2008.01.032
  36. Gupta, S.S., Bosco, F.G. and Batra, R.C. (2010), "Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and in extensional modes of vibration", Comput. Mat. Sci., 47, 1049-1059. https://doi.org/10.1016/j.commatsci.2009.12.007
  37. Hayat, T., Haider, F., Muhammad, T. and Alsaedi, A. (2017), "Three-dimensional rotating flow of carbon nanotubes with Darcy-Forchheimer porous medium", PLoS ONE, 12(7), e0179576. 10.1371/journal.pone.0179576
  38. Huang, J. and Han, Q. (2016), "Controllable nanoscale rotating actuator system based on carbon nanotube and graphene", Nanotechnology, 27, 155501. https://doi.org/10.1088/0957-4484/27/15/155501
  39. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0
  40. Khodabakhshi, M. and Moosavi, A. (2017), "Unidirectional Transport of Water Through an Asymmetrically Charged Rotating CNT", J. Phys. Chem. C, 121(42), 23649-23658. https://doi.org/10.1021/acs.jpcc.7b06003
  41. Kotwal, T., Pawaskar, D.N. and Inamdar, M.M. (2018), "Effect of nonlinear damping on whirling motion of carbon nanotube oscillators", Proceedings of the 25th International Congress on Sound and Vibration 2018, ICSV 2018, pp. 1896-1903.
  42. Kral, P. and Sadeghpour, H.R. (2002), "Laser spinning of nanotubes: A path to fast-rotating microdevices", Phys. Rev. B, 65, 161401. https://doi.org/10.1103/PhysRevB.65.161401
  43. Kroner, E. (1963), "On the physical reality of torque stresses in continuum mechanics", Int. J. Eng. Sci., 1(2), 263-278. https://doi.org/10.1016/0020-7225(63)90037-5
  44. Mirtalaie, S.H. and Hajabasi, M.A. (2017), "Nonlinear axiallateral-torsional free vibrations analysis of Rayleigh rotating shaft", Arch. Appl. Mech., 87(9), 1465-1494. https://doi.org/10.1007/s00419-017-1265-6
  45. Nahvi, H. and Boroojeni, M.E. (2013), "Free vibrations of a rotating single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Acta Phys. Polon. A, 123, 304-306. https://doi.org/10.12693/APhysPolA.123.304
  46. Narendar, S. (2012), "Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanotube with consideration of transverse shear deformation and rotary inertia", Appl. Math. Comput., 219, 1232-1243. https://doi.org/10.1016/j.amc.2012.07.032
  47. Natsuki, T., Melvin, G.J.H. and Ni, Q.Q. (2013), "Vibrational frequencies and raman radial breathing modes of multi-walled carbon nanotubes based on continuum mechanics", J. Mater. Sci. Res., 2(4), 1-11. https://doi.org/10.5539/jmsr.v2n4p1
  48. Numanoglu, H.M., Akgoz, B. and Civalek, O. (2018), "On dynamic analysis of nanorods", Int. J. Eng. Sci., 130, 33-50. https://doi.org/10.1016/j.ijengsci.2018.05.001
  49. Ouakad, H.M., El-Borgi, S., Mousavi, S.M. and Friswell, M.I. (2018), "Static and dynamic response of CNT nanobeam using nonlocal strain and velocity gradient theory", Appl. Math. Model., 62, 207-222. https://doi.org/10.1016/j.apm.2018.05.034
  50. Pinnola, F.P., Faghidian, S.A., Barretta, R. and de Sciarra, F.M. (2020), "Variationally consistent dynamics of nonlocal gradient elastic beams", Int. J. Eng. Sci., 149, 103220. https://doi.org/10.1016/j.ijengsci.2020.103220
  51. Pradhan, S.C. and Murmu, T. (2010), "Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever", Phys. E, 42, 1944-1949. https://doi.org/10.1016/j.physe.2010.03.004
  52. Rao, S.S. (2000), Mechanical Vibrations, Massachusetts; Addison-Wesley Publishing Company, New York, USA.
  53. Romano, G., Barretta, R., Diaco, M. and de Sciarra, F.M. (2017), "Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams", Int. J. Mech. Sci., 121, 151-156. https://doi.org/10.1016/j.ijmecsci.2016.10.036
  54. Shojaeefard, M.H., Saeidi Googarchin, H., Mahinzare, M. and Adibi, M. (2019), "Vibration and buckling analysis of a rotary functionally graded piezomagnetic nanoshell embedded in viscoelastic media", J. Intel. Mater. Syst. Struct., 29(11), 2344-2361. https://doi.org/10.1177/1045389X18770856
  55. Surana, K.S., Mysore, D. and Reddy, J.N. (2019), "Non-classical continuum theories for solid and fluent continua and some applications", Int. J. Smart Nano Mater., 10(1), 28-89. https://doi.org/10.1080/19475411.2018.1530700
  56. Torkaman-Asadi, M.A., Rahmanian, M. and Firouz-Abadi, R.D. (2015), "Free vibrations and stability of high-speed rotating carbon nanotubes partially resting on Winkler foundations", Compos. Struct., 126, 52-61. https://doi.org/10.1016/j.compstruct.2015.02.037
  57. Tu, Q., Yang, Q., Wang, H. and Li, S. (2016), "Rotating carbon nanotube membrane filter for water desalination", Sci. Rep., 6, 26183. https://doi.org/10.1038/srep26183
  58. Xu, L. and Yang, Q. (2015), "Multi-field coupled dynamics for a micro beam", Mech. Based Des. Struct. Mach., 43, 57-73. https://doi.org/10.1080/15397734.2014.928221
  59. Yang, Z., Nakajima, M., Shen, Y. and Fukuda, T. (2011), "Nanogyroscope assembly using carbon nanotube based on nanorobotic manipulation", Proceedings of 2011 International Symposium on Micro-Nano Mechatronics and Human Science, IEEE, pp. 309-314. https://doi.org/10.1109/MHS.2011.6102199
  60. Zhu, X. and Li, L. (2017a), "Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity", Int. J. Mech. Sci., 133, 639-650. https://doi.org/10.1016/j.ijmecsci.2017.09.030
  61. Zhu, X. and Li, L. (2017b), "Twisting statics of functionally graded nanotubes using Eringen's nonlocal integral model", Compos. Struct., 178, 87-96. https://doi.org/10.1016/j.compstruct.2017.06.067
  62. Zhu, X. and Li, L. (2019), "A well-posed Euler-Bernoulli beam model incorporating nonlocality and surface energy effect", Appl. Math. Mech.-Engl. Ed., 40, 1561-1588. https://doi.org/10.1007/s10483-019-2541-5

Cited by

  1. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157