DOI QR코드

DOI QR Code

Investigation of Supporting Electrolyte Effect on Supercapacitor Properties of Poly(Carbazole) Films

  • Duran, Berrin (Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Chemistry) ;
  • Unver, Irem Cakmakci (Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Chemistry) ;
  • Bereket, Gozen (Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Chemistry)
  • 투고 : 2019.04.18
  • 심사 : 2019.08.05
  • 발행 : 2020.02.28

초록

In this study poly(carbazole) films deposited on stainless steel have been investigated as electrode material for supercapacitor applications. Poly(carbazole) films were electrodeposited using cyclic voltammetry in presence of lithium, sodium and tetrabutylammonium perchlorate salts. Poly(carbazole) films doped with perchlorate anions having different counter cations were characterized by SEM, ATR-FTIR and solid state conductivity measurements. Capacitive behaviours of PCz coated steel electrodes were tested by cyclic voltammetry, charge-discharge analysis and electrochemical impedance spectroscopy. It was found that counter cation of the dopant is significantly effective on the capacitive performance on the obtained PCz films and the PCz film synthesized from lithium perchlorate has the better capacitive performance than the poly(carbazole)s synthesized from sodium perchlorate and tetrabutylammonium perchlorate salts.

키워드

참고문헌

  1. D. Kalpana, Y.S. Lee, Y. Sato, J. Power Sources, 2009, 190(2), 592-595. https://doi.org/10.1016/j.jpowsour.2009.01.056
  2. M.S. Kumar, D.K. Bhat, Physica B, 2009, 404(8-11), 1143-1147. https://doi.org/10.1016/j.physb.2008.11.072
  3. B.E. Conway, Electrochemical Supercapacitors, Scientific Fundamentals and Technology Applications, Kluwer Academic Publishers, Plenum Press, New York, 1999.
  4. E. Hur, A. Arslan, Synth. Met., 2014, 193, 81-88. https://doi.org/10.1016/j.synthmet.2014.03.031
  5. J.R. Miller, P. Simon, Science, 2008, 321(5889), 651-652. https://doi.org/10.1126/science.1158736
  6. J.R. Miller, A.F. Burke, Electrochem. Soc. Interface, 2008, 17(1), 53-57. https://doi.org/10.1149/2.F08081IF
  7. Z. Zhou, X.F. Wu, J. Power Sources, 2013, 222, 410-416. https://doi.org/10.1016/j.jpowsour.2012.09.004
  8. M. Caglar, A. Arslan, R. Kilic, E. Hur, Synth. Met., 2015, 206, 8-14. https://doi.org/10.1016/j.synthmet.2015.04.006
  9. L. Li, E .Liu, J. Li, Y. Yang, H. Shen, Z. Huang, X. Xiang, W. Li, J. Power Sources, 2010, 195(5), 1516-1521. https://doi.org/10.1016/j.jpowsour.2009.09.016
  10. M. Jin, G. Han, Y. Chang, H. Zhao, H. Zhang, Electrochim. Acta, 2011, 56(27), 9838-9845. https://doi.org/10.1016/j.electacta.2011.08.079
  11. G.A. Snook, P. Kao, A.S. Best, J. Power Sources, 2011, 196(1), 1-12. https://doi.org/10.1016/j.jpowsour.2010.06.084
  12. S. Sarangapani, B.V. Tilak, C.P. Chen, J. Electrochem. Soc., 1996, 143(11), 3791-3799. https://doi.org/10.1149/1.1837291
  13. J.P. Zheng, T.R. Jow, J. Power Sources, 1996, 62(2), 155-159. https://doi.org/10.1016/S0378-7753(96)02424-X
  14. F. Cao, Y. Liu, B. Chen, L. Fei, Y. Wang, J. Yuan, Electrochim. Acta, 2012, 81, 1-7. https://doi.org/10.1016/j.electacta.2012.05.140
  15. H. Liu, Y. Wang, X. Gou, T. Qi, J. Yang, Y. Ding, Mater. Sci. Eng. B., 2013, 178(5), 293-298. https://doi.org/10.1016/j.mseb.2012.12.002
  16. Y. Shen, M. Wan, Synth. Met., 1998, 96(2), 127-132. https://doi.org/10.1016/S0379-6779(98)00076-9
  17. D. Yigit, M. Gullu, Electrochim. Acta, 2018, 282, 64-80. https://doi.org/10.1016/j.electacta.2018.06.005
  18. A. Eftekhari, L. Li, Y. Yang, J. Power Sources, 2017, 347, 86-107. https://doi.org/10.1016/j.jpowsour.2017.02.054
  19. P.Liu, J. Yan, Z. Guang, Y. Huang, X. Li, W. Huang, J. Power Sources, 2019, 424, 108-130. https://doi.org/10.1016/j.jpowsour.2019.03.094
  20. S. M. Selvakumar, Int. J. Hydrogen Energy, 2018, 43(8), 4067-4080. https://doi.org/10.1016/j.ijhydene.2017.10.106
  21. A. Laforgue, P. Simon, C. Sarrazin, J.F. Fauvarque, J. Power Sources, 1999, 80(1-2), 142-148. https://doi.org/10.1016/S0378-7753(98)00258-4
  22. K. Wu, J. Zhao, R. Wu, B. Ruan, H. Liu, M. Wu, J. Electroanal. Chem., 2018, 823, 527-530. https://doi.org/10.1016/j.jelechem.2018.06.052
  23. C. Fu, H. Zhou, R. Liu, Z. Huang, J. Chen, Y. Kuang, Mater. Chem. Phys., 2012, 132(2-3), 596-600. https://doi.org/10.1016/j.matchemphys.2011.11.074
  24. D.V. Zhuzhelskii, E.G. Tolstopjatova, S.N. Eliseeva, A.V. Ivanov, S. Miao, V.V. Kondratiev, Electrochim. Acta, 2019, 299, 182-190. https://doi.org/10.1016/j.electacta.2019.01.007
  25. B.M. Hryniewicz, H. Winnischofer, M. Vidotti, J. Electroanal. Chem., 2018, 823, 573-579. https://doi.org/10.1016/j.jelechem.2018.07.008
  26. M. Suominen, P. Damlin, C. Kvarnstrom, Electrochim. Acta, 2019, 307, 214-223. https://doi.org/10.1016/j.electacta.2019.03.157
  27. A. Afzal, F.A. Abuilaiwi, A. Habib, M. Awais, S.B. Waje, M.A. Atieh, J. Power Sources, 2017, 352, 174-186. https://doi.org/10.1016/j.jpowsour.2017.03.128
  28. P. Atri, D.C. Tiwari, R. Sharma, Synth. Met., 2017, 227, 21-28. https://doi.org/10.1016/j.synthmet.2017.03.002
  29. E. Karaca, D. Gokcen, N. O. Pekmez, K. Pekmez, Synth. Met., 2019, 247, 255-267. https://doi.org/10.1016/j.synthmet.2018.12.014
  30. B.S. Singu, K.R. Yoon, J. Alloys Compd., 2018, 742, 610-618. https://doi.org/10.1016/j.jallcom.2018.01.328
  31. W. Sun, X. Chen, J. Power Sources, 2009, 193(2), 924-929. https://doi.org/10.1016/j.jpowsour.2009.04.063
  32. Y. Xu, J. Wang, W. Sun , S. Wang, , J. Power Sources, 2006, 159(1), 370-373. https://doi.org/10.1016/j.jpowsour.2006.04.011
  33. W.C. Chen, T.C. Wen, H. Teng, Electrochim. Acta, 2003, 48(6), 641-649. https://doi.org/10.1016/S0013-4686(02)00734-X
  34. C. Weidlich, K.M. Mangold, K. Juttner, Electrochim. Acta, 2005, 50(7-8), 1547-1552. https://doi.org/10.1016/j.electacta.2004.10.032
  35. S.H. Song, D.S. Han, H.J. Lee, H.S. Cho, S.M. Chang, J.M. Kim, H. Muramatsu, Synth. Met., 2001, 117(1-3), 137-139. https://doi.org/10.1016/S0379-6779(00)00555-5
  36. B. Duran, I.Cakmakci, G. Bereket, Corros. Sci., 2013, 77, 194-201. https://doi.org/10.1016/j.corsci.2013.08.001
  37. A.S. Sarac, M. Ates, E.A. Parlak, J. Appl. Electrochem., 2006, 36(8), 889-898. https://doi.org/10.1007/s10800-006-9145-8
  38. V. Raj, D. Madheswari, M.M. Ali, J. Appl. Polym. Sci., 2010, 116(1), 147-154. https://doi.org/10.1002/app.31511
  39. V.S. Jamadede, D.S. Dhawale, C.D. Lokhande, Synth. Met., 2010, 160(9-10), 955-960. https://doi.org/10.1016/j.synthmet.2010.02.007
  40. M. Gullu, D. Yigit, Synth. Met., 2012, 162(15-16), 1434-1442. https://doi.org/10.1016/j.synthmet.2012.05.028
  41. C. Arbizzani, M. Mastragostino, L. Meneghello, Electrochim. Acta, 1996, 41(1), 21-26. https://doi.org/10.1016/0013-4686(95)00289-Q
  42. J. Wang, Y. Xu, X. Chen, X. Du, J. Power Sources, 2007, 163(2), 1120-1125. https://doi.org/10.1016/j.jpowsour.2006.10.004
  43. E. Ermis, D. Yigit, M. Gullu, Electrochim. Acta, 2013, 90, 623-633. https://doi.org/10.1016/j.electacta.2012.12.052
  44. Y. Zhang, Z. Qin, Integr. Ferroelectr., 2011, 128(1), 86-90. https://doi.org/10.1080/10584587.2011.576584
  45. A. Rudge, I. Raistrick, S. Gottesfeld, J.P. Ferraris, Electrochim. Acta, 1994, 39, 273-287. https://doi.org/10.1016/0013-4686(94)80063-4
  46. B. Muthulakshmi, D. Kalpana, S. Pitchumani, N.G. Renganathan, J. Power Sources, 2006, 158(2), 1533-1537. https://doi.org/10.1016/j.jpowsour.2005.10.013
  47. C.C. Hu, C.H. Chu, J. Electroanal. Chem., 2001, 503(1), 105-116. https://doi.org/10.1016/S0022-0728(01)00385-0
  48. P.R. Kumar, D. Kalpana, N.G. Renganathan, S. Pitchumani, Synth. Met., 2007, 157(22-23), 899-904. https://doi.org/10.1016/j.synthmet.2007.08.023
  49. B. Wessling, Synth. Met., 1998, 93(2), 143-154. https://doi.org/10.1016/S0379-6779(98)00017-4
  50. S. Chen, I. Zhitomirsky, Mater. Lett., 2013, 98, 67-70. https://doi.org/10.1016/j.matlet.2013.01.123
  51. G.R. Mitchell, F.J. Davis, C.H. Legge, Synth. Met., 1988, 26(3), 247-257. https://doi.org/10.1016/0379-6779(88)90241-X
  52. M. Ates, A.S. Sarac, J. Appl. Electrochem., 2009, 39(10), 2043-2048. https://doi.org/10.1007/s10800-009-9882-6

피인용 문헌

  1. Polycarbazole and Its Derivatives: Synthesis and Applications. A Review of the Last 10 Years vol.12, pp.10, 2020, https://doi.org/10.3390/polym12102227