DOI QR코드

DOI QR Code

Li2S-Incorporated Separator for Achieving High-Energy-Density Li-S Batteries

  • Park, Jong Won (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education) ;
  • Kang, Jukyoung (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education) ;
  • Koh, Jeong Yoon (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education) ;
  • Caron, Arnaud (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Seok (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Jung, Yongju (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education)
  • Received : 2019.07.10
  • Accepted : 2019.07.29
  • Published : 2020.02.28

Abstract

We present a new and facile design of a high-performance Li-S cell by integrating a Li2S-impregnated glass fiber separator together with a common sulfur cathode. We find that a considerable amount of Li2S is consumed amidst the first charge, and most of Li2S disappears at the end of the second charge. During the charge process, additional sulfur material is formed and contributes to a significant enhancement of the discharge capacity (~1400 mAh/g), compared with a control cell (~1260 mAh/g) without Li2S. Moreover, the Li2S containing cell exhibits much higher cycling stability (a 31% increase from ~840 to ~1100 mAh/g in the 100th cycle) and rate capability (a 30% increase from ~580 to ~750 mAh/g at 2 C) than the control cell. Our results indicate that adopting Li2S-containing separator is highly effective to improving the electrochemical performances of Li-S cells.

Keywords

References

  1. S. Chu and A. Majumdar, Nature, 2012, 488(7411), 294-303. https://doi.org/10.1038/nature11475
  2. N. Nitta, F. Wu, J. T. Lee and G. Yushin, Mater. Today, 2015, 18(5), 252-264. https://doi.org/10.1016/j.mattod.2014.10.040
  3. P. G. Bruce, S. A. Freunberger, L. J. Hardwick and J.-M. Tarascon, Nat. Mater., 2012, 11(1), 19-29. https://doi.org/10.1038/nmat3191
  4. A. Manthiram, Y. Fu, S.-H. Chung, C. Zu and Y.-S. Su, Chem. Rev., 2014, 114(23), 11751-11787. https://doi.org/10.1021/cr500062v
  5. X. Fang and H. Peng, Small, 2014, 11(13), 1488-1511. https://doi.org/10.1002/smll.201402354
  6. J. Xiao, Adv. Energy Mater., 2015, 5(16), 1501102. https://doi.org/10.1002/aenm.201501102
  7. S.-H. Chung and A. Manthiram, ChemSusChem, 2014, 7(6), 1655-1661. https://doi.org/10.1002/cssc.201301287
  8. Z. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P.-C. Hsu and Y. Cui, Nat. Commun., 2013, 4(1), 1331-1336. https://doi.org/10.1038/ncomms2327
  9. M. Rao, W. Li and E. J. Cairns, Electrochem. Commun., 2012, 17, 1-5. https://doi.org/10.1016/j.elecom.2011.12.022
  10. Y.-S. Su and A. Manthiram, Nat. Commun., 2012, 3(1), 1166. https://doi.org/10.1038/ncomms2163
  11. R. Singhal, S.-H. Chung, A. Manthiram and V. Kalra, J. Mater. Chem. A, 2015, 3(8), 4530-4538. https://doi.org/10.1039/C4TA06511E
  12. X. Yu, S. Feng, M. J. Boyer, M. Lee, R. C. Ferrier Jr., N. A. Lynd, G. S. Hwang, G. Wang, S. Swinnea and A. Manthiram, Mater. Today Energy, 2018, 7, 98-104. https://doi.org/10.1016/j.mtener.2018.01.002
  13. L. Shi, F. Zeng, X. Cheng, K. H. Lam, W. Wang, A. Wang, Z. Jin, F. Wu and Y. Yang, Chem. Eng. J., 2018, 334, 305-312. https://doi.org/10.1016/j.cej.2017.08.015
  14. M. Hagen, S. Dorfler, P. Fanz, T. Berger, R. Speck, J. Tubke, H. Althues, M. J. Hoffmann, C. Scherr and S. Kaskel, J. Power Sources, 2013, 224, 260-268. https://doi.org/10.1016/j.jpowsour.2012.10.004
  15. Z. Yuan, H.-J. Peng, J.-Q. Huang, X.-Y. Liu, D.-W. Wang, X.-B. Cheng and Q. Zhang, Adv. Funct. Mater., 2014, 24(39), 6105-6112. https://doi.org/10.1002/adfm.201401501
  16. G. Zhou, L. Li, C. Ma, S. Wang, Y. Shi, N. Koratkar, W. Ren, F. Li and H.-M. Cheng, Nano Energy, 2015, 11, 356-365. https://doi.org/10.1016/j.nanoen.2014.11.025
  17. G. Zhou, E. Paek, G. S. Hwang and A. Manthiram, Nat. Commun., 2015, 6(1), 7760. https://doi.org/10.1038/ncomms8760
  18. Y. Li, K. "Kelvin" Fu, C. Chen, W. Luo, T. Gao, S. Xu, J. Dai, G. Pastel, Y. Wang, B. Liu, J. Song, Y. Chen, C. Yang and L. Hu, ACS Nano, 2017, 11(5), 4801-4807. https://doi.org/10.1021/acsnano.7b01172
  19. X. Wang, T. Gao, F. Han, Z. Ma, Z. Zhang, J. Li and C. Wang, Nano Energy, 2016, 30, 700-708. https://doi.org/10.1016/j.nanoen.2016.10.049
  20. M. D. Patel, E. Cha, C. Kang, B. Gwalani and W. Choi, Carbon, 2017, 118, 120-126. https://doi.org/10.1016/j.carbon.2017.03.035
  21. D. Li, F. Han, S. Wang, F. Cheng, Q. Sun and W.-C. Li, ACS Appl. Mater. Inter., 2013, 5(6), 2208-2213. https://doi.org/10.1021/am4000535
  22. H.-J. Peng, J.-Q. Huang, X.-B. Cheng and Q. Zhang, Adv. Energy Mater., 2017, 7(24), 1700260. https://doi.org/10.1002/aenm.201700260
  23. J. Y. Koh, M.-S. Park, E. H. Kim, B. O. Jeong, S. Kim, K. J. Kim, J.-G. Kim, Y.-J. Kim and Y. Jung, J. Electrochem. Soc., 2014, 161(14), A2133-A2137. https://doi.org/10.1149/2.0201414jes
  24. T. J. Kim, J. Y. Koh, H. J. Yang and Y. Jung, Bull. Korean Chem. Soc., 2016, 37(2), 148-153. https://doi.org/10.1002/bkcs.10643
  25. Y. Yang, G. Zheng, S. Misra, J. Nelson, M. F. Toney and Y. Cui, J. Am. Chem. Soc., 2012, 134(37), 15387-15394. https://doi.org/10.1021/ja3052206