DOI QR코드

DOI QR Code

회전식 고온용융과립법을 이용한 덱시부프로펜 함유 고체분산체 연구

A Study of Dexibuprofen Loaded Solid Dispersion Using Rotary Hot-melt Granulation

  • 투고 : 2019.10.10
  • 심사 : 2020.02.07
  • 발행 : 2020.02.29

초록

본 논문에서는 물에 대한 용해도가 낮은 모델 약물로서 덱시부프로펜을 사용하여 당류 및 당알코올류를 분산체 물질로 사용하여 약물의 용출속도를 증가시킬 수 있는 고체분산체를 제조하고 평가하는 것을 목적으로 한다. 이를 위해 제조방법으로써 회전식 고온용융과립법 사용하였고 기기의 가동온도 범위인 120 ℃에서 녹는점을 가지는 Fructose가 고체분산체의 제조에 적절한 첨가제임을 시차주사 열량 분석법을 사용하여 확인하였다. 제조된 고체분산체의 물리화학적 평가를 위해 DSC, XRD, 함량 및 함량균일성시험, 용출시험, 붕해시험을 진행하였다. 그 결과, X-ray 회절분석을 통해 고체분산체에 포함된 덱시부프로펜의 결정성이 감소한 것을 확인하였다. 이를 통해 덱시부프로펜과 fructose를 함유하는 고체분산체를 이용하여 제조된 정제에 대해 붕해시험을 실시하여 1~2초 이내에 신속히 붕해되는 것을 확인하였으며 또한 덱시부프로펜 원료의 용출속도와 비교하여 30분 이내에서 약 20% 이상 빠른 용출속도를 보이는 것을 확인할 수 있었다. 결과적으로 회전식 고온용융과립법을 통한 고체분산체의 제조는 약물의 결정성 감소를 통한 용해속도 증가 및 붕해시간 증가를 유도할 수 있어 다양한 고형제제의 생산에 활용할 수 있을 것으로 기대할 수 있다.

The purpose of this paper was to prepare and evaluate solid dispersions (SD) that can increase the dissolution rate of dexibuprofen as a model drug with low solubility in water using saccharides and sugar alcohols as dispersion materials. DSC, XRD, content and content uniformity test, dissolution test, and disintegration test were conducted for physicochemical evaluation of the prepared SD. For the results, it was confirmed using differential scanning calorimetry that fructose, which has a melting point around 120 ℃ of the device operating temperature range, is a suitable excipient for the preparation of SD by the rotary hot-melt granulation (RHMG) method. X-ray diffraction analysis was conducted to confirm that the crystallinity of dexibuprofen was reduced. Disintegration test of the prepared tablet using SD-containing dexibuprofen and fructose confirmed a very fast disintegration time within 1~2 seconds and also showed that the dissolution rate was about 20% faster than that of the dexibuprofen raw material. Dexibuprofen with reduced crystallinity by SD confirmed through the RHMG method can be used to increase the dissolution rate of the drug and increase the disintegration time of the tablet. Thus, it can be used in the manufacturing of various solid preparations.

키워드

참고문헌

  1. ULLAH, Naseem, et al. Dexibuprofen nanocrystals with improved therapeutic performance: fabrication, characterization, in silico modeling, and in vivo evaluation. International journal of nanomedicine, Vol.13, pp.1677-1692, 2018. DOI: https://dx.doi.org/10.2147%2FIJN.S151597 https://doi.org/10.2147/IJN.S151597
  2. B. P. Badgujar and A. S. Mundada: The technologie used for developing orally disintegrating tablets: A review, Acta Pharm. Vol.61, pp.117-139, 2011. DOI: https://dx.doi.org/10.2478/v10007-011-0020-8
  3. MOORE, R. Andrew; DERRY, Sheena; MCQUAY, Henry J. Single dose oral dexibuprofen [S (+)-ibuprofen] for acute postoperative pain in adults. Cochrane Database of Systematic Reviews, 2009. DOI: https://doi.org/10.1002/14651858.CD007550.pub2
  4. Gabard, B., et al. Comparison of the bioavailability of dexibuprofen administered alone or as part of racemic ibuprofen. European journal of clinical pharmacology 48.6, pp.505-511, 1995. DOI: https://doi.org/10.1007/BF00194342
  5. Druginfo, Dexibuprofen search result, https://www.druginfo.co.kr/search2/search.aspx?q=dexibuprofen, (accessed Sep. 30, 2019)
  6. PASSERINI, Nadia, et al. Preparation and characterisation of ibuprofen-poloxamer 188 granules obtained by melt granulation. European Journal of Pharmaceutical Sciences, Vol.15, No.1, pp 71-78. 2002. DOI: https://doi.org/10.1016/S0928-0987(01)00210-X
  7. ERAGA, Sylvester Okhuelegbe, et al. A comparative UV- HPLC analysis of ten brands of ibuprofen tablets. Asian Pacific Journal of Tropical Biomedicine, Vol.5, No.10, pp.880-884. 2015. DOI: https://doi.org/10.1016/j.apjtb.2015.06.005
  8. KOH, P. T., et al. Formulation development and dissolution rate enhancement of efavirenz by solid dispersion systems. Indian journal of pharmaceutical sciences, Vol.75, No.3, pp.291-301, 2013. DOI: https://dx.doi.org/10.4103%2F0250-474X.117434 https://doi.org/10.4103/0250-474X.117434
  9. MORITA, Yutaka, et al. Evaluation of the disintegration time of rapidly disintegrating tablets via a novel method utilizing a CCD camera. Chemical and pharmaceutical bulletin, Vol.50, No.9, pp.1181-1186, 2002. DOI: https://doi.org/10.1248/cpb.50.1181
  10. BAEK, Hyung Hee, et al. Development of novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamylose. Archives of pharmacal research, Vol.35, No.4, pp.683-689, 2012. DOI: https://doi.org/10.1007/s12272-012-0412-4
  11. PAUDEL, Amrit, et al. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. International journal of pharmaceutics, Vol.453, No.1, pp.253-284, 2013. DOI: https://doi.org/10.1016/j.ijpharm.2012.07.015
  12. BALAKRISHNAN, Prabagar, et al. Enhanced oral bioavailability of dexibuprofen by a novel solid self-emulsifying drug delivery system (SEDDS). European Journal of Pharmaceutics and Biopharmaceutics, Vol.72, No.3, pp.539-545, 2009. DOI: https://doi.org/10.1016/j.ejpb.2009.03.001
  13. ABDELBARY, Ghada; MAKHLOUF, Amal. Adoption of polymeric micelles to enhance the oral bioavailability of dexibuprofen: formulation, in-vitro evaluation and in-vivo pharmacokinetic study in healthy human volunteers. Pharmaceutical development and technology, Vol.19, No.6 pp.717-727, 2014. DOI: https://doi.org/10.3109/10837450.2013.823994
  14. GRYCZKE, Andreas, et al. Development and evaluation of orally disintegrating tablets (ODTs) containing Ibuprofen granules prepared by hot melt extrusion. Colloids and surfaces B: biointerfaces, Vol.86, No.2, pp.275-284, 2011. DOI: https://doi.org/10.1016/j.colsurfb.2011.04.007