DOI QR코드

DOI QR Code

A study on the characteristics of intelligent sawing system for band saw

띠톱기계의 스마트 톱 절삭 시스템의 특성에 관한연구

  • LUO, luPing (College of Mechanical Engineering, Zhejiang University of Technology) ;
  • DING, zelin (Zhejiang Chenlong Sawing Machine Co, Ltd) ;
  • DING, shengxia (Zhejiang Chenlong Sawing Machine Co, Ltd) ;
  • JIANG, Ping (Zhejiang Chenlong Sawing Machine Co, Ltd) ;
  • FAN, li (Zhejiang Chenlong Sawing Machine Co, Ltd) ;
  • XIAO, leihua (Zhejiang Chenlong Sawing Machine Co, Ltd) ;
  • PAN, bosong (College of Mechanical Engineering, Zhejiang University of Technology) ;
  • An, Boyoung (Mechatronics Engineering, Hanyang University) ;
  • Eum, Younseal (Interdiscipinary Engineering Systems, Hanyang University) ;
  • Han, Changsoo (Robot Engineering, Hanyang University)
  • 라로평 (저장공업대학교 기계공학과) ;
  • 정택임 (저장신룡 기계톱유한주식회사) ;
  • 정협생 (저장신룡 기계톱유한주식회사) ;
  • 강평 (저장신룡 기계톱유한주식회사) ;
  • 팬리 (저장신룡 기계톱유한주식회사) ;
  • 샤오레이화 (저장신룡 기계톱유한주식회사) ;
  • 반백송 (저장공업대학교 기계공학과) ;
  • 안보영 (한양대학교 메카트로닉스공학과) ;
  • 엄윤설 (한양대학교 융합시스템과) ;
  • 한창수 (한양대학교 로봇공학과)
  • Received : 2019.08.23
  • Accepted : 2020.02.07
  • Published : 2020.02.29

Abstract

To help solve the problems of how to set the optimal sawing force and the optimal controller parameters for different sawing conditions, a mathematical model of a proposed sawing system was established according to the principle of sawing force control. The conventional PID control method was then used for further research of the closed-loop control of the sawing force. Finally, through simulation and experimental research, the influence rule of the controller parameters and sawing load on the control performance and the relationships between the sawing width and controller parameters (proportion coefficient) and the sawing force setting value were obtained, from which a system scheme for intelligent sawing control of a band sawing machine was proposed. The research shows that the sawing efficiency of the intelligent sawing system was 18.1 (48%) higher than that of the original sawing system when sawing a grooved section sawing material, which verifies the good control effect of the proposed scheme.

본 연구에서는 띠톱기계의 서로 다른 톱 절삭 상태에서, 최적의 톱 절삭력 및 최적의 컨트롤러 파라미터가 어떻게 설정 되는지에 대한 문제를 해결하기 위한 연구를 진행하였다. 이를 위해 띠톱 기계의 톱 절삭 시스템의 수학적 모형을 수립하고, 전통적인 PID 제어 방법과 톱 절삭력의 폐회로(closed-loop)제어에 대하여 병행하여 깊게 연구함으로써, 주 모터의 동력, 띠톱기계의 동적특성 및 톱날 강도 등의 컨트롤러 파라미터 및 톱 절삭 부하가 제어 성능에 대한 규칙을 발견하여, 톱 절삭 너비와 컨트롤러 파라미터(비례계수 Kp)의 관계, 톱 절삭력의 설정값의 관계를 얻어, 일종의 띠톱 기계의 스마트 톱 절삭 제어를 갖는 시스템 방안을 제기하였다. 연구 결과에 따르면 홈 절단면의 절삭 재료를 톱 절삭 시 스마트 톱 절삭 시스템의 톱 절삭 효율이 기존 톱 절삭 시스템보다 18.1㎠/min(48%) 향상 되였으며, 이 방안이 뛰어난 제어 효과를 가지고 있음을 보여 주었다.

Keywords

References

  1. T. J. Ko, H. S. Kim. Mechanistic cutting force model in band sawing[J]. International Journal of Machine Tools & Manufacture, Vol.39, No.8, pp.1185-1197, 1999. DOI: https://doi.org/10.1016/S0890-6955(98)00087-X
  2. Y. C. Pei, et al. Analytical study on the stiffness and natural frequency improvements of tensioned inner diameter saw blade, European Journal of Mechanics/A Solids Vol.75, pp.197-204, 2019. DOI: https://doi.org/10.1016/j.euromechsol.2019.01.023
  3. T. Thaler, et al. Chatter detection in band sawing based on discriminant analysis of sound features[J]. Applied Acoustics, Vol.77, pp.114-121, 2014. DOI: https://doi.org/10.1016/j.apacoust.2012.12.004
  4. Ilhan Asilturk, Ali Unuvar. Intelligent adaptive control and monitoring of band sawing using a neural-fuzzy system[J]. journal of materials processing technology, Vol.209, No.5, pp.2302-2313, 2009. DOI: https://doi.org/10.1016/j.jmatprotec.2008.05.031
  5. H. Sun, R. Yu, Y. H. Chen, et al. Optimal design of robust control for fuzzy mechanical systems: performance-based leakage and confidence-index measure[J]. IEEE Transactions on Fuzzy Systems, Vol.PP, No.99, pp.1-1. DOI: https://doi.org/10.1109/TFUZZ.2018.2880695
  6. Q. Huang, Y. H. Chen, A. Cheng. Adaptive Robust Control for Fuzzy Mechanical Systems: Constraint-Following and Redundancy in Constraints[J]. IEEE Transactions on Fuzzy Systems, Vol.23, No.4, pp.1113-1126, 2015. DOI: https://doi.org/10.1109/TFUZZ.2014.2346241
  7. Y. Tang, D. Velez-Diaz. Robust fuzzy control of mechanical systems. IEEE Transactions on Fuzzy Systems, Vol.11, No.3, pp.411-418, 2003. DOI: https://doi.org/10.1109/TFUZZ.2003.812700
  8. S. Kohn-Rich, H. Flashner. Robust fuzzy logic control of mechanical systems[J]. Fuzzy Sets and Systems, Vol.133, No.1, pp.77-108, 2003. DOI: https://doi.org/10.1016/S0165-0114(02)00212-9
  9. K. J. Astrom, T. Hagglund, C. C. Hang, et al. Automatic Tuning and Adaptation for PID Controllers-A Survey[J], Control Engineering Practice, Vol.1, No.4, pp.699-714, 1993. DOI: https://doi.org/10.1016/S1474-6670(17)50762-4