• 제목/요약/키워드: Sawing Force Control

검색결과 6건 처리시간 0.018초

띠톱기계의 스마트 톱 절삭 시스템의 특성에 관한연구 (A study on the characteristics of intelligent sawing system for band saw)

  • 라로평;정택임;정협생;강평;팬리;샤오레이화;반백송;안보영;엄윤설;한창수
    • 한국산학기술학회논문지
    • /
    • 제21권2호
    • /
    • pp.195-204
    • /
    • 2020
  • 본 연구에서는 띠톱기계의 서로 다른 톱 절삭 상태에서, 최적의 톱 절삭력 및 최적의 컨트롤러 파라미터가 어떻게 설정 되는지에 대한 문제를 해결하기 위한 연구를 진행하였다. 이를 위해 띠톱 기계의 톱 절삭 시스템의 수학적 모형을 수립하고, 전통적인 PID 제어 방법과 톱 절삭력의 폐회로(closed-loop)제어에 대하여 병행하여 깊게 연구함으로써, 주 모터의 동력, 띠톱기계의 동적특성 및 톱날 강도 등의 컨트롤러 파라미터 및 톱 절삭 부하가 제어 성능에 대한 규칙을 발견하여, 톱 절삭 너비와 컨트롤러 파라미터(비례계수 Kp)의 관계, 톱 절삭력의 설정값의 관계를 얻어, 일종의 띠톱 기계의 스마트 톱 절삭 제어를 갖는 시스템 방안을 제기하였다. 연구 결과에 따르면 홈 절단면의 절삭 재료를 톱 절삭 시 스마트 톱 절삭 시스템의 톱 절삭 효율이 기존 톱 절삭 시스템보다 18.1㎠/min(48%) 향상 되였으며, 이 방안이 뛰어난 제어 효과를 가지고 있음을 보여 주었다.

비대칭 구조를 갖는 두 협조 로봇의 하이브리드 위치/힘 제어에 관한 연구 (A study on the hybrid position/force control of two cooperating arms with asymmetric kinematic structures)

  • 여희주;서일홍;홍석규;김창호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.743-746
    • /
    • 1996
  • A hybrid control scheme to regulate the force and position by dual arms is proposed, where two arms are treated as one arm in a kinematic viewpoint. Our approach is different from other hybrid control approaches which consider robot dynamics, in the sense that we employ a purely kinematic based approach for hybrid control, with regard to the nature of position-controlled industrial robots. The proposed scheme is applied to sawing task. In the sawing task, the trajectory of the saw grasped by dual arms is planned in an offline fashion. When the trajectory of the saw is planned to follow a line in a horizontal plane, 3 position parameters are to be controlled(i.e, two translational positions and one rotational position). And a certain level of contact force has to be controlled along the vertical direction(i.e., minus z-direction) not to loose the contact with the object to be sawn. Typical feature of sawing task is that the contact position where the force control is to be performed is continuously changing. Therefore, the kinematic mapping between the force controlled position and the joint actuators has to be updated continuously. The effectiveness of the proposed control scheme is experimentally demonstrated. The proposed hybrid control scheme can be applied to arbitrary dual arm systems, regardless of their kinematic structure and the number of actuated joints.

  • PDF

IMS를 위한 로봇 군 제어방법 : 이종 협조 로봇의 톱질 작업 (Control Methodology of Multiple Arms for IMS : Experimental Sawing Task by Nonidentical Cooperating Arms)

  • 여희주;서일홍;이병주;오상록
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권4호
    • /
    • pp.452-460
    • /
    • 1999
  • Sawing experiments using a two-arm system have been performed in this work. The two-arm system under consideration of two kinematically-nonidentical arms. A passive joint is inserted at the end-point of one robot in order to increase the mobility up to the motion degree required for sawing tasks. A hybrid control algorithm for control of the two-arm system is designed. We experimentally show that the performance of the velocity and force response are satisfactory, and that one additional passive joint not only prevents the system from unwanted yaw motion in the sawing task, but also allows an unwanted pitch motion to be notably reduced by an internal load control. To show the general applicability of the proposed algorithms, we perform experimentation under several different conditions for saw, such as three saw blades, two sawing speeds, and two vertical forces.

  • PDF

톱기계에서 절삭력 예측을 위한 역학모델 (A Mechanistic Model for the Prediction of Cutting Forces in Band Sawing)

  • 정훈;고태조;김희술
    • 한국정밀공학회지
    • /
    • 제15권5호
    • /
    • pp.145-152
    • /
    • 1998
  • In this research, in order to predict the cutting force using a mechanistic model, specific cutting force was firstly obtained through the cutting experiments. Band sawing process is similar to a milling, that is multi-point cutting. Therefore it is not easy matter to evaluate specific cutting force. Thus, the thickness of workpiec was made smaller than one pitch of the saw in terms of fly cutting in the face milling process. Then the cutting force was predicted by analyzing the geometric shape of a saw tooth The tooth shape used in the research was raker set style that was generally used in band sawing. And a set of teeth is comprised of three teeth, those are ranked as left, straight and right. The mechanistic model was developed in this study considered those shapes of each tooth. From the validation experiments, the predicted cutting forces coincided well with the measured ones. Therefore the predicted cutting forces can be used for the adaptive control of saw engaging feed rate in the band sawing.

  • PDF

단일물체 조작을 위한 두 협조 로봇의 협조제어 (A Coordination Control Methodlolgy for Two Cooperating Arms Handling a Single Object)

  • 여희주
    • 제어로봇시스템학회논문지
    • /
    • 제6권2호
    • /
    • pp.190-196
    • /
    • 2000
  • A hybrid position/force control scheme to regulate the force and position by dual arms is proposed where two arms are treated as one rm in a kinematic viewpoint. The force error calculated from the information of two force/torque sensors attached to the end of each arm is transferred to minimum configuration space coordinates and then is distributed to total system joint coordinates, The position adjustment at the total con-figuration coordinates is computed based on the effective compliance matrix with respect to total joint coordinates which is obtained by coordinate transformation between the task coordinates and the total joint coordinates. The proposed scheme is applied to sawing task. When the trajectory of the saw is planned to follow a line in a horizontal plane 2 position parameters are to be controlled(i.e., two translational positions) Also a certain level of contact force has to be controlled along the vertical direction(i.e. minus z-direction) not to loose the contact with the object to be sawn. We experimentally show that the performance of the velocity and force response are satisfactory. The proposed hybrid control scheme can be applied to arbitrary two cooperating arm system regardless of their kinematic structure and the number of actuated joints.

  • PDF

와이어쏘 공정에서 다이아몬드 입자의 인성지수가 절단 성능에 미치는 영향 (Effect of Toughness Index of Diamond Abrasives on Cutting Performance in Wire Sawing Process)

  • 김도연;이태경;김형재
    • 한국산업융합학회 논문집
    • /
    • 제23권4_2호
    • /
    • pp.675-682
    • /
    • 2020
  • Multi-wire sawing is the prominent technology employed to cut hard material ingots into wafers. This paper aimed to research the effect of diamond toughness index on the cutting performance of electroplated diamond wire. Three different toughness index of diamond abrasives were used to manufacture electroplated diamond wires. The cutting performance of electroplated diamond wire is verified through experiments, in which sapphire ingot are cut using single wire sawing machine. A single wire saw for constant load slicing is developed for the cutting performance evaluation of electroplated diamond wire. Choosing the cutting depth, total cutting depth, cutting force and wear of electroplated diamond wires as evaluation parameters, the performance of electroplated diamond wire is evaluated. The results of this study showed that there was a significant direct relationship between the toughness index of diamond abrasives and the cutting performance. Results demonstrated that diamond abrasive with a high toughness index showed higher cutting performance. However, all diamond abrasives showed similar cutting performance under low load conditions. The results of this paper are useful for the development of cutting large diameter ingots and cutting high hardness ingots at high speed.