DOI QR코드

DOI QR Code

Automatic Detection of Dissimilar Regions through Multiple Feature Analysis

다중의 특징 분석을 통한 비 유사 영역의 자동적인 검출

  • 장석우 (안양대학교 소프트웨어학과) ;
  • 정명희 (안양대학교 소프트웨어학과)
  • Received : 2019.12.30
  • Accepted : 2020.02.07
  • Published : 2020.02.29

Abstract

As mobile-based hardware technology develops, many kinds of applications are also being developed. In addition, there is an increasing demand to automatically check that the interface of these applications works correctly. In this paper, we describe a method for accurately detecting faulty images from applications by comparing major characteristics from input color images. For this purpose, our method first extracts major characteristics of the input image, then calculates the differences in the extracted major features, and decides if the test image is a normal image or a faulty image dissimilar to the reference image. Experiment results show that the suggested approach robustly determines similar and dissimilar images by comparing major characteristics from input color images. The suggested method is expected to be useful in many real application areas related to computer vision, like video indexing, object detection and tracking, image surveillance, and so on.

모바일 기반의 하드웨어 기술이 발전함에 따라 많은 종류의 응용 프로그램들이 개발되고 있다. 그리고 이런 응용프로그램들의 인터페이스가 올바르게 동작하는지를 자동으로 검사하려는 수요가 증가하고 있다. 본 논문에서는 입력되는 여러 가지 유형의 영상으로부터 주요한 특징의 비교 분석을 통해서 응용 프로그램의 실행 오류 화면을 강인하게 검출하는 접근 방법을 제시한다. 본 논문에서 제시된 방법에서는 먼저 입력되는 영상으로부터 영상을 대표하는 주요한 다중의 특징을 추출한다. 그런 다음, 추출된 다중의 특징의 차이를 비교함으로써 입력된 영상이 목표 영상과 동일한 정상적인 영상인지, 아니면 목표 영상과 유사하지만 서로 다른 오류 영상인지를 효과적으로 판단한다. 실험 결과에서는 제안된 알고리즘이 입력되는 다양한 종류의 영상으로부터 주요한 다중의 특징 비교를 통해서 정상적인 영상과 오류가 발생한 영상을 정확하게 검출한다는 것을 보여준다. 본 논문에서 제안된 접근 방법은 비디오 색인, 객체 검출 및 추적, 영상 감시 등과 같은 컴퓨터 비전과 관련된 많은 실제 응용 분야에서 유용하게 사용될 것으로 기대된다.

Keywords

References

  1. M. Abdullah, W. Iqbal, A. Erradi, "Unsupervised learning approach for web application autodecomposition into microservices," Journal of Systems and Software, Vol.151, pp.243-257, May 2019. DOI: https://doi.org/10.1016/j.jss.2019.02.031
  2. V. D. Son, S. H. Yoon, "Duty Cycle Scheduling considering Delay Time Constraints in Wireless Sensor Networks" The Journal of The Institute of Internet, Broadcasting and Communication, Vol.18, No.2, pp.169-176, Apr. 2018. DOI: https://doi.org/10.7236/JIIBC.2018.18.2.169
  3. S. Y. Shin, B. J. Park, "A Study on Context Aware Vertical Handover Scheme for Supporting Optimized Flow Multi-Wireless Channel Service based Heterogeneous Networks" The Journal of The Institute of Internet, Broadcasting and Communication, Vol.19, No.2, pp.1-7, Apr. 2019. DOI: https://doi.org/10.7236/JIIBC.2019.19.2.1
  4. L. L. Iacono, P. L. Gorski, J. Grosse, N. Gruschka, "Signalling over-privileged mobile applications using passive security indicators," Journal of Information Security and Applications, Vol.34, Part.1, pp.27-33, Jun. 2017. DOI: https://doi.org/10.1016/j.jisa.2016.11. 006
  5. Y. M. Lee, J. S. Shin, "A Study on the Design of IoT-based Thermal Sensor and Video Sensor Integrated Surveillance Equipment" The Journal of The Institute of Internet, Broadcasting and Communication, Vol.19, No.6, pp.9-13, Dec. 2019. DOI: https://doi.org/10.7236/JIIBC.2019.19.6.9
  6. M. Babu, P. Franciosa, D. Ceglarek, "Spatio- temporal adaptive sampling for effective coverage measurement planning during quality inspection of free form surfaces using robotic 3D optical scanner," Journal of Manufacturing Systems, Vol.53, pp.93-108, Oct. 2019. DOI: https://doi.org/10.1016/j. jmsy.2019.08.003
  7. S. Borjigin, P. K. Sahoo, "Color image segmentation based on multi-level Tsallis-Havrda-Charvat entropy and 2D histogram using PSO algorithms," Pattern Recognition, Vol.92, pp. 107-118, Aug. 2019. DOI: https://doi.org/10.1016/j.patcog.2019.03.011
  8. E. Elboher, M. Werman, "Asymmetric correlation: a noise robust similarity measure for template matching," IEEE Transactions on Image Processing, Vol.22, No.8, pp.3062-3073, Aug. 2013. DOI: https://doi.org/10.1109/TIP.2013.2257811
  9. B. Wu, H. Zeng, H. Hu, "Illumination invariant feature point matching for high-resolution planetary remote sensing images," Planetary and Space Science, Vol.152, pp.45-54, Mar. 2018. DOI: https://doi.org/10.1016/j.pss.2018.01.007
  10. J. Masek, R. Burget, L. Povoda, and M. Harvanek, "Image search using similarity measures based on circular sectors," In Proceedings of the Fourth International Conference on Advanced Information Technologies and Applications, pp.241-251, 2015. DOI: https://doi.org/10.5121/csit.2015.51519
  11. J. Shi, X. Wang, "A local feature with multiple line descriptors and its speeded-up matching algorithm," Computer Vision and Image Understanding, Vol.162, pp.57-70, Sep. 2017. DOI: https://doi.org/10.1016/j. cviu.2017.08.012
  12. J. Liang, D. Liu, "A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery," ISPRS Journal of Photogrammetry and Remote Sensing, Vol.159, pp.53-62, Jan. 2020. DOI: https://doi.org/10.1016/j.isprsjprs.2019.10.017
  13. P. Banerjee, A. K. Bhunia, A. Bhattacharyya, P. P. Roy, S. Murala, "Local neighborhood intensity pattern - a new texture feature descriptor for image retrieval," Expert Systems with Applications, Vol.113, pp.100-115, Dec. 2018. DOI: https://doi. org/10.1016/j.eswa.2018.06.044
  14. C. Li, Y. Huang, L. Zhu, "Gabor texture image retrieval based on Gaussian copula models of Gabor wavelets," Pattern Recognition, Vol.64, pp. 118-129, Apr. 2017. DOI: https://doi.org/10.1016/j.patcog.2016. 10.030
  15. Y. Yu, H. Zhao, "Novel sign subband adaptive filter algorithms with individual weighting factors," Signal Processing, Vol.122, pp.14-23, May 2016. DOI: https://doi.org/10.1016/j.sigpro.2015.11.007