DOI QR코드

DOI QR Code

A Effect of Frequency Response Effect of Butter-Worth Filter on Optical Receive System

광 수신시스템에서 버터워쓰필터의 주파수 응답 효과에 관한 영향

  • Kim, Sun-Yeob (Dept. of Information Communication, Namseou University)
  • 김선엽 (남서울대학교 정보통신공학과)
  • Received : 2019.12.27
  • Accepted : 2020.02.07
  • Published : 2020.02.29

Abstract

In an optical system that serves as the backbone of an information transmission system, it is essential to evaluate the statistical characteristics of the signal and noise for a performance evaluation and optimization of the system. The optical receiver system improves the reception sensitivity by adopting an optical amplifier in front of the optical detector to improve the reception sensitivity, but some problems change the bandwidth of the electronic signal to the optical signal in the optical receiver due to the ASE noise added to the output of the optical detector. The problem of changing the ratio of the bandwidth of these signals varies according to the passband characteristics of the filter present at the output stage. The frequency response effect can be solved by constructing an infinite order filter, but it is almost impossible to implement it. In this paper, the Butterworth filter was implemented to evaluate the frequency response characteristics of an optical receiver system according to the filter order. The simulation results showed that the receiver sensitivity increases as the order of Butter-Worth filters increases. In addition, as a result of simulation of the change of various values, it was confirmed that the reception sensitivity increased with increasing. That is, the average photocurrent increases, and the dispersion decreases with increasing.

정보전송시스템의 백본 역할을 하고 있는 광시스템에서는 시스템의 성능평가 및 최적화를 위해 신호와 잡음의 통계 특성에 대한 평가가 필수적이다. 광 수신시스템에서는 수신감도를 개선하기 위해 광 검출기 전단에 광증폭기를 채용하여 수신감도를 개선하고 있으나 광 검출기의 출력부에 첨가되는 ASE 잡음으로 인해 광수신기에서 광신호에 대한 전자신호의 대역폭이 비가 변화되는 문제점 또한 존재한다. 이러한 신호들의 대역폭의 비의 변화 문제는 출력단에 존재하는 필터의 통과대역 특성에 따라 변화하게 되는데, 주파수 응답 효과는 무한대의 차수를 갖는 필터를 구성하면 해결할 수 있으나 이를 실제 구현하는 것은 거의 불가능하므로 본 논문에서는 버터 워쓰 필터를 구현하여 필터의 차수에 따른 광 수신시스템의 주파수 응답 특성을 평가하였다. 시뮬레이션 결과를 통해 Butter-Worth 필터의 차수 N이 증가하면 필터의 수신감도가 증가됨을 확인 할 수 있었다. 또한 다양한 nsp값의 변화에 대한 시뮬레이션 결과 nsp가 증가할수록 수신감도가 증가함을 확인할 수 있었다. 즉, nsp에 따라 광전류의 평균치는 증가하고 분산은 감소하기 때문인 것으로 평가할 수 있다.

Keywords

References

  1. B. W. Seo, "Joint Transceiver Design for SWIPT in MIMO Interference Channel", The Journal of The Institute of Internet, Broadcasting and Communication, Vol. 19, No. 5, pp. 55-62, 2019. DOI: https://doi.org/10.7236/JIIBC.2019.19.5.55
  2. Y. G. Sun, Y. M. Hwang, I. S. Sim, and J. Y. Kim, "De-noising in Power Line Communication Using Noise Modeling Based on Deep Learning", The Journal of The Institute of Internet, Broadcasting and Communication, Vol. 18, No. 4, pp. 55-60, 2018. DOI: https://doi.org/10.7236/JIIBC.2018.18.4.55
  3. M. Singh, A. Kumar, and K. Singh, "Secure optical system that uses fully phase-based encryption and lithium niobate crystal as phase contrast filter for decryption," Optics & Laser Technology, Vol. 40, No. 4, pp. 619-624, 2008. DOI: http://dx.doi.org/10.1016/j.optlastec.2007.09.007
  4. A. Luukanen, L. Gronberg, T. Haarnoja, P. Helisto, K.Kataja, M. Leivo, A. Rautiainen, J. Penttila, J. E. Bjarnason, C. R. Dietlein, M. D. Ramirez and E. N. Grossman, "Passive THz imaging system for stand-off identification of concealed objects: Results from a turn-key 16 pixel imager", Proc. SPIE, Vol. 6948, No. 69480O, pp. 1-9, 2008. DOI: http://dx.doi.org/10.1117/12.784922
  5. B. N. Behnken and G. Karunasiri, "Real-time terahertz imaging of nonmetallic objects for security screening and anticounterfeiting applications", Proc. of SPIE, Vol. 7117, No. 711705, pp. 1-10, 2008. DOI: https://doi.org/10.1117/12.800632
  6. C. Weg, W. von Spiegel, R. Henneberg, R. Zimmermann, T.Loeffler and H. G. Roskos, "Fast Active THz Cameras with Ranging Capabilities", J. Infrared Milli Terahz Waves, Vol. 30, No. 12, pp. 1281-1296, 2009. DOI:https://doi.org/10.1007/s10762-009-9565-8
  7. Z. Liu, S. L. Xu, C. Lin, J. Dai, and S. Liu, "Image encryption scheme by using iterative random phase encoding in gyrator transform domains," Optics and Lasers in Engineering, Vol. 49, No. 4, pp. 542-546, 2011. DOI: http://dx.doi.org/10.1016/j.optlaseng.2010.12.005
  8. T. Ujvari, P. Koppa, M. Lovasz, P. Varhegyi, S. Sajti, E. Lorincz, and P. Richter, "A secure data storage system based on phase-encoded thin polarization holograms," Journal of Optics A: Pure and Applied Optics, Vol. 6, No. 4, pp. 401-411, 2004. DOI: http://dx.doi.org/10.1088/1464-4258/6/4/017
  9. P. Koppa, "Phase-to-amplitude data page conversion for holographic storage and optical encryption," Applied Optics, Vol. 46, No. 17, pp. 3561-3571, 2007. DOI: http://dx.doi.org/10.1364/AO.46.003561
  10. D. S. Monaghan, U. Gopinathan, T. J. Naughton, and J. T. Sheridan, "Key-space analysis of double random phase encryption technique," Applied Optics, Vol. 46, No. 26, pp. 6641-6647, 2007. DOI:http://dx.doi.org/10.1364/AO.46.006641
  11. E. Perez-Cabre, M. Cho, and B. Javidi, "Information authentication using photon counting double random phase encrypted images," Optics Letters, Vol. 36, No. 1, pp. 22-24, 2011. DOI: http://dx.doi.org/10.1364/AO.46.006641
  12. T. Sarkadi and P. Koppa, "Quantitative security evaluation of optical encryption using hybrid phase and amplitude-modulated keys," Applied Optics, Vol. 51, No. 6, pp. 745-750, 2012. DOI:http://dx.doi.org/10.1364/AO.51.000745
  13. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jordens, T. Hochrein and M. Koch, "Terahertz imaging: applications and perspectives", Appl. Optics Vol. 49, No. 19, pp. E48-E57, 2010. DOI: http://dx.doi.org/10.1364/AO.49.000E48
  14. Z. Liu, M. Yang, W. Liu, S. Li, M. Gong, W. Liu, and S. Liu, "Image encryption algorithm based on the random local phase encoding in gyrator transform domains," Optics Communications, Vol. 285, No. 19, pp. 3921-3925, 2012. DOI: http://dx.doi.org/10.1016/j.optcom.2012.05.061
  15. B. Javidi and T. Nomura, "Securing information by use of digital holography," Optics Letters, Vol. 25, No. 1, pp. 28-30, 2000. DOI: http://dx.doi.org/10.1364/OL.25.000028
  16. X. Tan, O. Matoba, Y. Okada-Shudo, M. Ide, T. Shimura, and K. Kuroda, "Secure optical memory system with polarization encryption," Applied Optics, Vol. 40, No. 14, pp. 2310-2315, 2001. DOI: http://dx.doi.org/10.1364/AO.40.002310