DOI QR코드

DOI QR Code

Effects of anaerobic sealing agents on preload maintenance of screw-retained implant prosthesis with surface of screws

임플란트 보철물 나사의 전하중 유지에 나사 표면에 따른 혐기성 나사 고정제의 효과

  • Ryu, Seung-Beom (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Heo, Seong-Joo (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Koak, Jai-Young (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Kim, Seong-Kyun (Department of Prosthodontics, School of Dentistry, Seoul National University)
  • 류승범 (서울대학교 치과대학 치과보철학교실) ;
  • 허성주 (서울대학교 치과대학 치과보철학교실) ;
  • 곽재영 (서울대학교 치과대학 치과보철학교실) ;
  • 김성균 (서울대학교 치과대학 치과보철학교실)
  • Received : 2020.03.02
  • Accepted : 2020.04.07
  • Published : 2020.04.30

Abstract

Purpose: The purpose of this study was to evaluate the preload maintenance of the retaining screw when using anaerobic sealing agents in implant fixture and abutment components. Specifically, the study examines the effects of anaerobic sealing agents on different types of screws. Materials and methods: External hexagon implants made of titanium and anti-rotational abutments were used. Titanium abutment screws and ebony abutment screws from the same manufacturer were used. The experiment was divided into four groups (n = 10 in each group). In the control group, no sealing agent was used at the implant fixture and abutment screw interface. All abutment screws were tightened according to the manufacturer's recommended torque (30 N.cm). After 24 hours, the removal torque (detorque) of each screw was measured using a digital torque gauge device. The data were analyzed by two-way ANOVA test according to normality distribution satisfaction. Results: Looking at the results for each group, titanium screws and no treatment showed detorque values of 20.3 ± 1.6 N.cm. titanium screws and applied anaerobic sealing agent showed detorque values of 32.4 ± 6.7 N.cm. Ebony screws and no treatment showed detorque values of 20.2 ± 1.5 N.cm. ebony screws and applied anaerobic sealing agent showed detorque values of 30.4 ± 4.5 N.cm. Conclusion: The detorque value was higher in the case of using anaerobic sealing agents in both the titanium screw and ebony screw groups. But there was no difference between the two screws.

목적: 본 연구의 목적은 임플란트 지대주 나사에 혐기성 나사 고정제의 적용 유무와 나사 종류에 따른 풀림 토크 값의 차이를 평가하는 것이다. 재료 및 방법: 외부 육각형 임플란트 고정체를 사용하였고, 동일한 제조사의 지대주와 지대주 나사가 사용되었다. 지대주 나사는 두 종류로 티타늄 재질의 나사(티타늄 나사)와 텅스텐 카바이드 코팅된 나사(Ebony 나사)가 사용되었다. 티타늄 나사에 아무 처리하지 않은 군(TI군)과 티타늄 나사에 나사 고정제를 사용한 군(TI_AS군), Ebony 나사에 아무 처리하지 않은 군(EB군)과 Ebony 나사에 나사 고정제를 사용한 군(EB_AS군)에 대해 실험을 진행하였다. 총 4가지 군에서 각 10개씩의 임플란트 고정체-지대주 복합체가 사용되었다. 디지털 토크 측정 장비를 사용하여 풀림 토크 값을 측정한 뒤 통계 처리하여 각 군별 비교하였다. 정규성 분포를 만족하여 Two-way ANOVA test (α = .05)를 이용하여 통계 분석하였다. 결과: 각 군에 대한 결과를 살펴보면 TI 군은 20.3 ± 1.6 N.cm, TI_AS 군에서 32.4 ± 6.7 N.cm, EB 군은 20.2 ± 1.5 N.cm, EB_AS 군에서 30.4 ± 4.5 N.cm의 풀림 토크 값을 나타냈다. 결론: 혐기성 나사 고정제를 사용한 경우 티타늄 나사와 ebony 나사 모두에서 고정제를 사용하지 않은 경우 보다 풀림 토크 값이 높게 나타났다. 하지만 두 나사 군 간의 차이는 존재하지 않았다.

Keywords

References

  1. Yousef H, Luke A, Ricci J, Weiner S. Analysis of changes in implant screws subject to occlusal loading: a preliminary analysis. Implant Dent 2005;14:378-82. https://doi.org/10.1097/01.id.0000187902.68436.e4
  2. Bickford JH. An introduction to the design and behavior of bolted joints. Marcel Decker: Inc.; 1995.
  3. Binon PP, Binon P. The external hexagonal interface and screw-joint stability: A primer on threaded fasteners in implant dentistry. Quint Dent Technol 2000;23:91-104.
  4. Jorge JR, Barao VA, Delben JA, Assuncao WG. The role of implant/abutment system on torque maintenance of retention screws and vertical misfit of implant-supported crowns before and after mechanical cycling. Int J Oral Maxillofac Implants 2013;28:415-22. https://doi.org/10.11607/jomi.2727
  5. Michalakis KX, Calvani PL, Muftu S, Pissiotis A, Hirayama H. The effect of different implant-abutment connections on screw joint stability. J Oral Implantol 2014;40:146-52. https://doi.org/10.1563/AAID-JOI-D-11-00032
  6. Sesma N, Pannuti C, Cardaropoli G. Retrospective clinical study of 988 dual acid-etched implants placed in grafted and native bone for single-tooth replacement. Int J Oral Maxillofac Implants 2012;27:1243-8.
  7. Breeding LC, Dixon DL, Nelson EW, Tietge JD. Torque required to loosen single-tooth implant abutment screws before and after simulated function. Int J Prosthodont 1993;6:435-9.
  8. Jorn D, Kohorst P, Besdo S, Rucker M, Stiesch M, Borchers L. Influence of lubricant on screw preload and stresses in a finite element model for a dental implant. J Prosthet Dent 2014;112:340-8. https://doi.org/10.1016/j.prosdent.2013.10.016
  9. Martin WC, Woody RD, Miller BH, Miller AW. Implant abutment screw rotations and preloads for four different screw materials and surfaces. J Prosthet Dent 2001;86:24-32. https://doi.org/10.1067/mpr.2001.116230
  10. Lang LA, May KB, Wang RF. The effect of the use of a counter-torque device on the abutment-implant complex. J Prosthet Dent 1999;81:411-7. https://doi.org/10.1016/S0022-3913(99)80007-9
  11. Theoharidou A, Petridis HP, Tzannas K, Garefis P. Abutment screw loosening in single-implant restorations: a systematic review. Int J Oral Maxillofac Implants 2008;23:681-90.
  12. Persson LG, Lekholm U, Leonhardt A, Dahlen G, Lindhe J. Bacterial colonization on internal surfaces of Branemark system implant components. Clin Oral Implants Res 1996;7:90-5. https://doi.org/10.1034/j.1600-0501.1996.070201.x
  13. Piattelli A, Vrespa G, Petrone G, Iezzi G, Annibali S, Scarano A. Role of the microgap between implant and abutment: a retrospective histologic evaluation in monkeys. J Periodontol 2003;74:346-52. https://doi.org/10.1902/jop.2003.74.3.346
  14. Seloto CB, Strazzi Sahyon HB, Dos Santos PH, Delben JA, Assuncao WG. Efficacy of sealing agents on preload maintenance of screw-retained implant-supported prostheses. Int J Oral Maxillofac Implants 2018;33:123-6. https://doi.org/10.11607/jomi.5576
  15. Ozdiler A, Bakir-Topcuoglu N, Kulekci G, Isik-Ozkol G. Effects of taper angle and sealant agents on bacterial leakage along the implant-abutment interface: An in vitro study under loaded conditions. Int J Oral Maxillofac Implants 2018;33:1071-7. https://doi.org/10.11607/jomi.6257
  16. Mathias CG, Maibach HI. Allergic contact dermatitis from anaerobic acrylic sealants. Arch Dermatol 1984;120:1202-5. https://doi.org/10.1001/archderm.1984.01650450084025
  17. Henkel. Loctite 243 Technical Data Sheet and Safety Data Sheet. 2019;007.1. Available at: https://www.henkel-adhesives. com/kr/ko/product/threadlockers/loctite_243.html
  18. Burguete RL, Johns RB, King T, Patterson EA. Tightening characteristics for screwed joints in osseointegrated dental implants. J Prosthet Dent 1994;71:592-9. https://doi.org/10.1016/0022-3913(94)90443-X
  19. Gubisch M, Liu Y, Spiess L, Romanus H, Krischok S, Ecke G, Schaefer JA, Knedlik Ch. Nanoscale multilayer WC/C coatings developed for nanopositioning: Part I. Microstructures and mechanical properties. Thin Solid Films 2005;488:132-9. https://doi.org/10.1016/j.tsf.2005.04.107
  20. Choi JU, Jeong CM, Jeon YC, Lim JS, Jeong HC. Influence of tungsten carbide/carbon coating on the preload of implant abutment screws. J Korean Acad Prosthodont 2006;44:229-42.
  21. Yoon KJ, Park YB, Choi H, Cho Y, Lee JH, Lee KW. Evaluation of stability of interface between CCM (Co-Cr-Mo) UCLA abutment and external hex implant. J Adv Prosthodont 2016;8:465-471. https://doi.org/10.4047/jap.2016.8.6.465
  22. Haack JE, Sakaguchi RL, Sun T, Coffey JP. Elongation and preload stress in dental implant abutment screws. Int J Oral Maxillofac Implants 1995;10:529-36.
  23. McGlumphy EA, Mendel DA, Holloway JA. Implant screw mechanics. Dent Clin North Am 1998;42:71-89.
  24. Piermatti J, Yousef H, Luke A, Mahevich R, Weiner S. An in vitro analysis of implant screw torque loss with external hex and internal connection implant systems. Implant Dent 2006;15:427-35. https://doi.org/10.1097/01.id.0000245440.09464.48
  25. Siamos G, Winkler S, Boberick KG. Relationship between implant preload and screw loosening on implant-supported prostheses. J Oral Implantol 2002;28:67-73. https://doi.org/10.1563/1548-1336(2002)028<0067:TRBIPA>2.3.CO;2
  26. Shigley JE. Mechanical engineering design. 3rd ed. New York: McGraw Hill; 1985.
  27. Motosh N. Development of design charts for bolts preloaded up to the plastic range. J Eng Ind Aug 1976;98:849-51. https://doi.org/10.1115/1.3439041
  28. Assuncao WG, Delben JA, Tabata LF, Barao VA, Gomes EA, Garcia IR Jr. Preload evaluation of different screws in external hexagon joint. Implant Dent 2012;21:46-50. https://doi.org/10.1097/ID.0b013e31823fcbce
  29. Assuncao WG, Barao VA, Delben JA, Gomes EA, Garcia IR Jr. Effect of unilateral misfit on preload of retention screws of implant-supported prostheses submitted to mechanical cycling. J Prosthodont Res 2011;55:12-8. https://doi.org/10.1016/j.jpor.2010.05.002
  30. Delben JA, Barao VA, Dos Santos PH, Assuncao WG. Influence of abutment type and esthetic veneering on preload maintenance of abutment screw of implant-supported crowns. J Prosthodont 2014;23:134-9. https://doi.org/10.1111/jopr.12065
  31. Sakaguchi RL, Borgersen SE. Nonlinear finite element contact analysis of dental implant components. Int J Oral Maxillofac Implants 1993;8:655-61.
  32. Steinebrunner L, Wolfart S, Ludwig K, Kern M. Implantabutment interface design affects fatigue and fracture strength of implants. Clin Oral Implants Res 2008;19:1276-84. https://doi.org/10.1111/j.1600-0501.2008.01581.x
  33. MIL-S-46163A. Compounds: Thread-locking, anaerobic, Single-component. US-defense standard. 1974. Available at: http://everyspec.com/MIL-SPECS/MIL-SPECS-MIL-S/MILS-46163A_16063/
  34. Ham YU, Jo KH, Jeon HH, Kim SI. Design and analysis of optimum application of thread-locker. Korean Soc Precision Eng 2017;5:343-4.
  35. Broggini N, McManus LM, Hermann JS, Medina RU, Oates TW, Schenk RK, Buser D, Mellonig JT, Cochran DL. Persistent acute inflammation at the implant-abutment interface. J Dent Res 2003;82:232-7. https://doi.org/10.1177/154405910308200316