DOI QR코드

DOI QR Code

Cytotoxic effects of different self-adhesive resin cements: Cell viability and induction of apoptosis

  • Sismanoglu, Soner (Department of Restorative Dentistry, Faculty of Dentistry, Altinbas University) ;
  • Demirci, Mustafa (Department of Restorative Dentistry, Faculty of Dentistry, Istanbul University) ;
  • Schweikl, Helmut (Department of Operative Dentistry and Periodontology, University of Regensburg Medical Centre) ;
  • Ozen-Eroglu, Gunes (Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University) ;
  • Cetin-Aktas, Esin (Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University) ;
  • Kuruca, Serap (Department of Physiology, Istanbul Faculty of Medicine, Istanbul University) ;
  • Tuncer, Safa (Department of Restorative Dentistry, Faculty of Dentistry, Istanbul University) ;
  • Tekce, Neslihan (Department of Restorative Dentistry, Faculty of Dentistry, Kocaeli University)
  • Received : 2019.11.25
  • Accepted : 2020.03.12
  • Published : 2020.04.30

Abstract

PURPOSE. The effects of four different self-adhesive resin cement materials on cell viability and apoptosis after direct and indirect exposure were evaluated using different cell culture techniques. MATERIALS AND METHODS. Self-adhesive cements were applied to NIH/3T3 mouse fibroblasts by the extract test method, cell culture inserts, and dentin barrier test method. After exposure periods of 24 h and 72 h, the cytotoxicity of these self-adhesive materials was evaluated using the MTT assay (viability) and the Annexin-V-FITC/PI staining (apoptosis). RESULTS. The lowest cell viability was found in cells exposed to BeautiCem SA for 24 h in the extract test method. Cell viability was reduced to 70.6% compared to negative controls. After the 72 h exposure period, viability rate of cell cultures exposed to BeautiCem SA decreased more than 2- fold (29.5%) while cells exposed to RelyX U200 showed the highest viability rate of 71.4%. In the dentin barrier test method, BeautiCem SA induced the highest number of cells in apoptosis after a 24 h exposure (4.1%). Panavia SA Cement Plus was the material that caused the lowest number of cells in apoptosis (1.5%). CONCLUSION. The used self-adhesive cements have showed different cytotoxic effects based on the evaluation method. As exposure time increased, the materials showed more cytotoxic and apoptotic effects. BeautiCem SA caused significantly more severe cytotoxic and apoptotic effects than other cements tested. Moreover, cements other than BeautiCem SA have caused necrotic cell death rather than apoptotic cell death.

Keywords

References

  1. Ferracane JL. Current trends in dental composites. Crit Rev Oral Biol Med 1995;6:302-18. https://doi.org/10.1177/10454411950060040301
  2. Van Landuyt KL, Snauwaert J, De Munck J, Peumans M, Yoshida Y, Poitevin A, Coutinho E, Suzuki K, Lambrechts P, Van Meerbeek B. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 2007;28:3757-85. https://doi.org/10.1016/j.biomaterials.2007.04.044
  3. Ferracane JL. Resin composite-state of the art. Dent Mater 2011;27:29-38. https://doi.org/10.1016/j.dental.2010.10.020
  4. Banks RG. Conservative posterior ceramic restorations: a literature review. J Prosthet Dent 1990;63:619-26. https://doi.org/10.1016/0022-3913(90)90316-5
  5. Palin WM, Ferracane JL. Resin-based cements used indentistry. In: PMJ, editor. Handbook of oral biomaterials. Singapore; Pan Stanford Publishing Pte. Ltd.; 2014. p. 213-52.
  6. D'Alpino PHP, Moura GEDD, Barbosa SCA, Marques LA, Eberlin MN, Nascimento FD, Tersariol ILDS. Differential cytotoxic effects on odontoblastic cells induced by self-adhesive resin cements as a function of the activation protocol. Dent Mater 2017;33:1402-15. https://doi.org/10.1016/j.dental.2017.09.011
  7. Ferracane JL, Stansbury JW, Burke FJ. Self-adhesive resin cements - chemistry, properties and clinical considerations. J Oral Rehabil 2011;38:295-314. https://doi.org/10.1111/j.1365-2842.2010.02148.x
  8. Polyzois GL. In vitro evaluation of dental materials. Clin Mater 1994;16:21-60. https://doi.org/10.1016/0267-6605(94)90088-4
  9. Van Landuyt KL, Nawrot T, Geebelen B, De Munck J, Snauwaert J, Yoshihara K, Scheers H, Godderis L, Hoet P, Van Meerbeek B. How much do resin-based dental materials release? A meta-analytical approach. Dent Mater 2011;27:723-47. https://doi.org/10.1016/j.dental.2011.05.001
  10. Al-Hiyasat AS, Darmani H, Milhem MM. Cytotoxicity evaluation of dental resin composites and their flowable derivatives. Clin Oral Investig 2005;9:21-5. https://doi.org/10.1007/s00784-004-0293-0
  11. Paula AB, Toste D, Marinho A, Amaro I, Marto CM, Coelho A, Marques-Ferreira M, Carrilho E. Once resin composites and dental sealants release bisphenol-A, How might this affect our clinical management?-A systematic review. Int J Environ Res Public Health 2019;16(9). pii: E1627.
  12. Van Landuyt KL, Krifka S, Hiller KA, Bolay C, Waha C, Van Meerbeek B, Schmalz G, Schweikl H. Evaluation of cell responses toward adhesives with different photoinitiating systems. Dent Mater 2015;31:916-27. https://doi.org/10.1016/j.dental.2015.04.016
  13. Hara AT, Queiroz CS, Freitas PM, Giannini M, Serra MC, Cury JA. Fluoride release and secondary caries inhibition by adhesive systems on root dentine. Eur J Oral Sci 2005;113:245-50. https://doi.org/10.1111/j.1600-0722.2005.00214.x
  14. Zhang M, Wang A, He W, He P, Xu B, Xia T, Chen X, Yang K. Effects of fluoride on the expression of NCAM, oxidative stress, and apoptosis in primary cultured hippocampal neurons. Toxicology 2007;236:208-16. https://doi.org/10.1016/j.tox.2007.04.007
  15. Kanjevac T, Milovanovic M, Volarevic V, Lukic ML, Arsenijevic N, Markovic D, Zdravkovic N, Tesic Z, Lukic A. Cytotoxic effects of glass ionomer cements on human dental pulp stem cells correlate with fluoride release. Med Chem 2012;8:40-5. https://doi.org/10.2174/157340612799278351
  16. Pagano S, Chieruzzi M, Balloni S, Lombardo G, Torre L, Bodo M, Cianetti S, Marinucci L. Biological, thermal and mechanical characterization of modified glass ionomer cements: The role of nanohydroxyapatite, ciprofloxacin and zinc l-carnosine. Mater Sci Eng C Mater Biol Appl 2019;94:76-85. https://doi.org/10.1016/j.msec.2018.09.018
  17. Mussolino De Queiroz A, Andreoli Do Amaral H, Caroline Da P, Mira S, Wanderley F, Paula-Silva G, Nelson-Filho P, Assed Bezerra Da Silva R, Assed Bezerra Da Silva L, Assed L, Da Silva B. In vivo evaluation of inflammation and matrix metalloproteinase expression in dental pulp induced by luting agents in dogs. Rio de Janeiro Dent J (Revista Cientifica do CRO-RJ) 2019;4:61-72. https://doi.org/10.29327/24816.4.1-11
  18. Trumpaite-Vanagiene R, Cebatariuniene A, Tunaitis V, Puriene A, Pivoriunas A. Live cell imaging reveals different modes of cytotoxic action of extracts derived from commonly used luting cements. Arch Oral Biol 2018;86:108-15. https://doi.org/10.1016/j.archoralbio.2017.11.011
  19. Klein-Junior CA, Zimmer R, Hentschke GS, Machado DC, Dos Santos RB, Reston EG. Effect of heat treatment on cytotoxicity of self-adhesive resin cements: Cell viability analysis. Eur J Dent 2018;12:281-6. https://doi.org/10.4103/ejd.ejd_34_18
  20. Alkurt M, Duymus ZY, Sisci T. Comparison of the effects of cytotoxicity and antimicrobial activities of self-adhesive, eugenol and noneugenol temporary and traditional cements on gingiva and pulp living cells. J Adv Oral Res 2019;10:40-8. https://doi.org/10.1177/2320206819850960
  21. Alvarez MMP, Carvalho RG, Barbosa SCA, Polassi MR, Nascimento FD, D'Alpino PHP, Tersariol ILDS. Oxidative stress induced by self-adhesive resin cements affects gene expression, cellular proliferation and mineralization potential of the MDPC-23 odontoblast-like cells. Dent Mater 2019;35:606-16. https://doi.org/10.1016/j.dental.2019.02.008
  22. Tuncer S, Demirci M, Schweikl H, Erguven M, Bilir A, Kara Tuncer A. Inhibition of cell survival, viability and proliferation by dentin adhesives after direct and indirect exposure in vitro. Clin Oral Investig 2012;16:1635-46. https://doi.org/10.1007/s00784-011-0669-x
  23. ISO 10993-5. Biological evaluation of medical devices-part 5: tests for in vitro cytotoxicity. 3rd ed. Geneva, Switzerland: International Organization for Standardization; 2009.
  24. Krifka S, Seidenader C, Hiller KA, Schmalz G, Schweikl H. Oxidative stress and cytotoxicity generated by dental composites in human pulp cells. Clin Oral Investig 2012;16:215-24. https://doi.org/10.1007/s00784-010-0508-5
  25. Pagano S, Lombardo G, Balloni S, Bodo M, Cianetti S, Barbati A, Montaseri A, Marinucci L. Cytotoxicity of universal dental adhesive systems: Assessment in vitro assays on human gingival fibroblasts. Toxicol In Vitro 2019;60:252-60. https://doi.org/10.1016/j.tiv.2019.06.009
  26. ISO 7405. Dentistry-evaluation of biocompatibility of medical devices used in dentistry. 3rd ed. Geneva, Switzerland: International Organization for Standardization; 2008.
  27. ISO 10993-12. Biological evaluation of medical devices-part 12: sample preparation and reference materials. 3rd ed. Geneva, Switzerland: International Organization for Standardization; 2012.
  28. Schmalz G, Schuster U, Nuetzel K, Schweikl H. An in vitro pulp chamber with three-dimensional cell cultures. J Endod 1999;25:24-9. https://doi.org/10.1016/S0099-2399(99)80394-X
  29. Jiang RD, Lin H, Zheng G, Zhang XM, Du Q, Yang M. In vitro dentin barrier cytotoxicity testing of some dental restorative materials. J Dent 2017;58:28-33. https://doi.org/10.1016/j.jdent.2017.01.003
  30. Geurtsen W, Lehmann F, Spahl W, Leyhausen G. Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. J Biomed Mater Res 1998;41:474-80. https://doi.org/10.1002/(SICI)1097-4636(19980905)41:3<474::AID-JBM18>3.0.CO;2-I
  31. Accorinte Mde L, Loguercio AD, Reis A, Muench A, de Araujo VC. Adverse effects of human pulps after direct pulp capping with the different components from a total-etch, three-step adhesive system. Dent Mater 2005;21:599-607. https://doi.org/10.1016/j.dental.2004.08.008
  32. Arslan Malkoc M, Demir N, Sengun A, Bozkurt SB, Hakki SS. Cytotoxicity evaluation of luting resin cements on bovine dental pulp-derived cells (bDPCs) by real-time cell analysis. Dent Mater J 2015;34:154-60. https://doi.org/10.4012/dmj.2014-167
  33. Kwon JS, Piao YZ, Cho SA, Yang SY, Kim JH, An S, Kim KM. Biocompatibility evaluation of dental luting cements using cytokine released from human oral fibroblasts and keratinocytes. Materials (Basel) 2015;8:7269-77. https://doi.org/10.3390/ma8115372
  34. Soares DG, Brito CA, Tavares da Silva RH, Ribeiro AP, Hebling J, de Souza Costa CA. Cytocompatibility of HEMAfree resin-based luting cements according to application protocols on dentine surfaces. Int Endod J 2016;49:551-60. https://doi.org/10.1111/iej.12479
  35. Pagano S, Coniglio M, Valenti C, Negri P, Lombardo G, Costanzi E, Cianetti S, Montaseri A, Marinucci L. Biological effects of resin monomers on oral cell populations: descriptive analysis of literature. Eur J Paediatr Dent 2019;20:224-32.
  36. da Fonseca Roberti Garcia L, Pontes EC, Basso FG, Hebling J, de Souza Costa CA, Soares DG. Transdentinal cytotoxicity of resin-based luting cements to pulp cells. Clin Oral Investig 2016;20:1559-66. https://doi.org/10.1007/s00784-015-1630-1
  37. Kurt A, Altintas SH, Kiziltas MV, Tekkeli SE, Guler EM, Kocyigit A, Usumez A. Evaluation of residual monomer release and toxicity of self-adhesive resin cements. Dent Mater J 2018;37:40-8. https://doi.org/10.4012/dmj.2016-380
  38. Monticelli F, Osorio R, Mazzitelli C, Ferrari M, Toledano M. Limited decalcification/diffusion of self-adhesive cements into dentin. J Dent Res 2008;87:974-9. https://doi.org/10.1177/154405910808701012
  39. de Souza Costa CA, Hebling J, Randall RC. Human pulp response to resin cements used to bond inlay restorations. Dent Mater 2006;22:954-62. https://doi.org/10.1016/j.dental.2005.10.007
  40. Shin H, Ko H, Kim M. Cytotoxicity and biocompatibility of Zirconia (Y-TZP) posts with various dental cements. Restor Dent Endod 2016;41:167-75. https://doi.org/10.5395/rde.2016.41.3.167
  41. Kraus D, Wolfgarten M, Enkling N, Helfgen EH, Frentzen M, Probstmeier R, Winter J, Stark H. In-vitro cytocompatibility of dental resin monomers on osteoblast-like cells. J Dent 2017;65:76-82. https://doi.org/10.1016/j.jdent.2017.07.008
  42. Ratanasathien S, Wataha JC, Hanks CT, Dennison JB. Cytotoxic interactive effects of dentin bonding components on mouse fibroblasts. J Dent Res 1995;74:1602-6. https://doi.org/10.1177/00220345950740091601
  43. Park HJ, Lyons JC, Ohtsubo T, Song CW. Acidic environment causes apoptosis by increasing caspase activity. Br J Cancer 1999;80:1892-7. https://doi.org/10.1038/sj.bjc.6690617
  44. Chang HH, Chang MC, Wang HH, Huang GF, Lee YL, Wang YL, Chan CP, Yeung SY, Tseng SK, Jeng JH. Urethane dimethacrylate induces cytotoxicity and regulates cyclooxygenase-2, hemeoxygenase and carboxylesterase expression in human dental pulp cells. Acta Biomater 2014;10:722-31. https://doi.org/10.1016/j.actbio.2013.10.006
  45. Inkielewicz-Stepniak I, Radomski MW, Wozniak M. Fisetin prevents fluoride- and dexamethasone-induced oxidative damage in osteoblast and hippocampal cells. Food Chem Toxicol 2012;50:583-9. https://doi.org/10.1016/j.fct.2011.12.015
  46. Kim EC, Park H, Lee SI, Kim SY. Effect of the acidic dental resin monomer 10-methacryloyloxydecyl dihydrogen phosphate on odontoblastic differentiation of human dental pulp cells. Basic Clin Pharmacol Toxicol 2015;117:340-9. https://doi.org/10.1111/bcpt.12404
  47. Hiraishi N, Kitasako Y, Nikaido T, Foxton RM, Tagami J, Nomura S. Acidity of conventional luting cements and their diffusion through bovine dentine. Int Endod J 2003;36:622-8. https://doi.org/10.1046/j.1365-2591.2003.00700.x
  48. Karimi M, Hesaraki S, Alizadeh M, Kazemzadeh A. Effect of synthetic amorphous calcium phosphate nanoparticles on the physicochemical and biological properties of resin-modified glass ionomer cements. Mater Sci Eng C Mater Biol Appl 2019;98:227-40. https://doi.org/10.1016/j.msec.2018.12.129
  49. Chen L, Yang J, Wang JR, Suh BI. Physical and biological properties of a newly developed calcium silicate-based selfadhesive cement. Am J Dent 2018;31:86-90.

Cited by

  1. Proliferation of Fibroblast Cells in Periradicular Tissue Following Intentional Replantation of Vertical Root Fractures Using Two Materials vol.22, pp.9, 2020, https://doi.org/10.5005/jp-journals-10024-3169