DOI QR코드

DOI QR Code

Neurotoxicity of local anesthetics in dentistry

  • Kim, Eun-Jung (Department of Dental Anesthesia and Pain Medicine, Pusan National University Dental Hospital, Dental Research Institute) ;
  • Kim, Hee Young (Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital) ;
  • Ahn, Ji-Hye (Department of Dental Anesthesia and Pain Medicine, Pusan National University Dental Hospital, Dental Research Institute)
  • 투고 : 2020.03.03
  • 심사 : 2020.04.15
  • 발행 : 2020.04.29

초록

During dental treatment, a dentist usually applies the local anesthesia. Therefore, all dentists should have expertise in local anesthesia and anesthetics. Local anesthetics have a neurotoxic effect at clinically relevant concentrations. Many studies have investigated the mechanism of neurotoxicity of local anesthetics but the precise mechanism of local anesthetic-induced neurotoxicity is still unclear. In addition, it is difficult to demonstrate the direct neurotoxic effect of local anesthetics because perioperative nerve damage is influenced by various factors, such as the anesthetic, the patient, and surgical risk factors. This review summarizes knowledge about the pharmacology of local anesthetics, nerve anatomy, and the incidence, risk factors, and possible cellular mechanisms of local anesthetic-induced neurotoxicity.

키워드

참고문헌

  1. Nau C, Wang GK. Interactions of local anesthetics with voltage-gated Na+ channels. J Membr Biol 2004; 201: 1-8. https://doi.org/10.1007/s00232-004-0702-y
  2. Nouette-Gaulain K, Capdevila X, Rossignol R. Local anesthetic 'in-situ' toxicity during peripheral nerve blocks: Update on mechanisms and prevention. Curr Opin Anaesthesiol 2012; 25: 589-95. https://doi.org/10.1097/ACO.0b013e328357b9e2
  3. Hogan QH. Pathophysiology of peripheral nerve injury during regional anesthesia. Reg Anesth Pain Med 2008; 33: 435-41. https://doi.org/10.1016/j.rapm.2008.03.002
  4. Cai XY, Xiong LM, Yang SH, Shao ZW, Xie M, Gao F, et al. Comparison of toxicity effects of ropivacaine, bupivacaine, and lidocaine on rabbit intervertebral disc cells in vitro. Spine J 2014; 14: 483-90. https://doi.org/10.1016/j.spinee.2013.06.041
  5. Yang S, Abrahams MS, Hurn PD, Grafe MR, Kirsch JR. Local anesthetic schwann cell toxicity is time and concentration dependent. Reg Anesth Pain Med 2011; 36: 444-51. https://doi.org/10.1097/AAP.0b013e318228c835
  6. Piper SL, Laron D, Manzano G, Pattnaik T, Liu X, Kim HT, Feeley BT. A comparison of lidocaine, ropivacaine and dexamethasone toxicity on bovine tenocytes in culture. J Bone Joint Surg Br 2012; 94: 856-62.
  7. Kessler J, Marhofer P, Hopkins PM, Hollmann MW. Peripheral regional anaesthesia and outcome: lessons learned from the last 10 years. Br J Anaesth 2015; 114: 728-45. https://doi.org/10.1093/bja/aeu559
  8. Moen V, Dahlgren N, Irestedt L. Severe neurological complications after central neuraxial blockades in sweden 1990-1999. Anesthesiology 2004; 101: 950-9. https://doi.org/10.1097/00000542-200410000-00021
  9. Lirk P, Picardi S, Hollmann MW. Local anaesthetics: 10 essentials. Eur J Anaesthesiol 2014; 31: 575-85. https://doi.org/10.1097/EJA.0000000000000137
  10. Yagiela JA. Local anesthetics. In: Pharmacology and therapeutics for dentistry. 4th ed. Edited by Yagiela JA, Neidle EA, Dowd FJ. St. Louis, Mosby. 1998, pp 217-34.
  11. Yagiela JA. Local anesthetics. In: Pain and anxiety control in dentistry. Edited by Dionne RA, Phero JC, Becker DE. Philadelphia, W.B. Saunders. 2002, pp 78-96.
  12. Haas DA. Drugs in dentistry. In: Compendium of pharmaceuticals and specialties (CPS). 37th ed. Canadian Pharmaceutical Association; 2002. pp L26-L29.
  13. Haas DA. An update on local anesthetics in dentistry. J Can Dent Assoc 2002; 68: 546-51.
  14. Moen V, Dahlgren N, Irestedt L. Severe neurological complications after central neuraxial blockades in sweden 1990-1999. Anesthesiology 2004; 101: 950-9. https://doi.org/10.1097/00000542-200410000-00021
  15. Auroy Y, Narchi P, Messiah A, Litt L, Rouvier B, Samii K. Serious complications related to regional anesthesia: results of a prospective survey in France. Anesthesiology 1997; 87: 479-86. https://doi.org/10.1097/00000542-199709000-00005
  16. Brull R, McCartney CJ, Chan VW, El-Beheiry H. Neurological complications after regional anesthesia: contemporary estimates of risk. Anesth Analg 2007; 104: 965-74. https://doi.org/10.1213/01.ane.0000258740.17193.ec
  17. Barrington MJ, Watts SA, Gledhill SR, Thomas RD, Said SA, Snyder GL, et al. Preliminary results of the australasian regional anaesthesia collaboration: a prospective audit of more than 7000 peripheral nerve and plexus blocks for neurologic and other complications. Reg Anesth Pain Med 2009; 34: 534-41. https://doi.org/10.1097/AAP.0b013e3181ae72e8
  18. Urban MK. and Urquhart, B. Evaluation of brachial plexus anesthesia for upper extremity surgery. Reg Anesth 1994; 19: 175-82.
  19. Hillerup S, Jensen RH, Ersboll BK. Trigeminal nerve injury associated with injection of local anesthetics: needle lesion or neurotoxicity? J Am Dent Assoc 2011; 142: 531-9. https://doi.org/10.14219/jada.archive.2011.0223
  20. Hillerup S, Jensen R. Nerve injury caused by mandibular block analgesia. Int J Oral Maxillofac Surg 2006; 35: 437-43. https://doi.org/10.1016/j.ijom.2005.10.004
  21. Welch MB, et al. Perioperative peripheral nerve injuries: a retrospective study of 380,680 cases during a 10-year period at a single institution. Anesthesiology 2009; 111: 490-7. https://doi.org/10.1097/ALN.0b013e3181af61cb
  22. Brull R, Hadzic A, Reina MA, Barrington MJ. Pathophysiology and etiology of nerve injury following peripheral nerve blockade. Reg Anesth Pain Med 2015; 40: 479-90. https://doi.org/10.1097/AAP.0000000000000125
  23. Yang S, Abrahams MS, Hurn PD, Grafe MR, Kirsch JR. Local anesthetic schwann cell toxicity is time and concentration dependent. Reg Anesth Pain Med 2011; 36: 444-51. https://doi.org/10.1097/AAP.0b013e318228c835
  24. Selander D, Dhuner KG, Lundborg G. Peripheral nerve injury due to injection needles used for regional anesthesia. Acta Anaesthesiol Scand 1977; 21: 182-8. https://doi.org/10.1111/j.1399-6576.1977.tb01208.x
  25. Hadzic A, Dilberovic F, Shah S, Kulenovic A, Kapur E, Zaciragic A, et al. Combination of intraneural injection and high injection pressure leads to fascicular injury and neurologic deficits in dogs. Reg Anesth Pain Med 2004; 29: 417-23. https://doi.org/10.1016/j.rapm.2004.06.002
  26. Lirk P, Birmingham B, Hogan Q. Regional anesthesia in patients with preexisting neuropathy. Int Anesthesiol Clin 2011; 49: 144-65. https://doi.org/10.1097/AIA.0b013e3182101134
  27. Werdehausen R, Fazeli S, Braun S, Hermanns H, Essmann F, Hollmann MW, et al. Apoptosis induction by different local anaesthetics in a neuroblastoma cell line. Br J Anaesth 2009; 103: 711-8. https://doi.org/10.1093/bja/aep236
  28. Takenami T, Yagishita S, Murase S, Hiruma H, Kawakami T, Hoka S. Neurotoxicity of intrathecally administered bupivacaine involves the posterior roots/posterior white matter and is milder than lidocaine in rats. Reg Anesth Pain Med 2005; 30: 464-72. https://doi.org/10.1016/j.rapm.2005.05.005
  29. Sakura S, Kirihara Y, Muguruma T, Kishimoto T, Saito Y. The comparative neurotoxicity of intrathecal lidocaine and bupivacaine in rats. Anesth Analg 2005; 101: 541-7. https://doi.org/10.1213/01.ANE.0000155960.61157.12
  30. Lirk P, Haller I, Colvin HP, Lang L, Tomaselli B, Klimaschewski L, et al. In vitro, inhibition of mitogenactivated protein kinase pathways protects against bupivacaine- and ropivacaine-induced neurotoxicity. Anesth Analg 2008; 106: 1456-64. https://doi.org/10.1213/ane.0b013e318168514b
  31. Boselli E, Duflo F, Debon R, Allaouchiche B, Chassard D, Thomas L, et al. The induction of apoptosis by local anesthetics: a comparison between lidocaine and ropivacaine. Anesth Analg 2003; 96: 755-6.
  32. Unami A, Shinohara Y, Ichikawa T, Baba Y. Biochemical and microarray analyses of bupivacaine-induced apoptosis. J Toxicol Sci 2003; 28: 77-94. https://doi.org/10.2131/jts.28.77
  33. Johnson ME, Uhl CB, Spittler KH, Wang H, Gores GJ. Mitochondrial injury and caspase activation by the local anesthetic lidocaine. Anesthesiology 2004; 101: 1184-94. https://doi.org/10.1097/00000542-200411000-00019
  34. Lu J, Xu SY, Zhang QG, Xu R, Lei HY. Bupivacaine induces apoptosis via mitochondria and p38 MAPK dependent pathways. Eur J Pharmacol 2011; 657: 51-8. https://doi.org/10.1016/j.ejphar.2011.01.055
  35. Li K, Han X. Endoplasmic reticulum stress is involved in the lidocaine-induced apoptosis in SH-SY5Y neuroblastoma cells. J Mol Neurosci 2015; 56: 122-30. https://doi.org/10.1007/s12031-014-0473-6
  36. Zhao W, Liu Z, Yu X, Lai L, Li H, Liu Z, et al. iTRAQ proteomics analysis reveals that PI3K is highly associated with bupivacaine-induced neurotoxicity pathways. Proteomics 2016; 16: 564-75. https://doi.org/10.1002/pmic.201500202
  37. Sakura S, Bollen AW, Ciriales R, Drasner K. Local anesthetic neurotoxicity does not result from blockade of voltage-gated sodium channels. Anesth Analg 1995; 81: 338-46. https://doi.org/10.1097/00000539-199508000-00023
  38. Hollmann MW, Strumper D, Herroeder S, Durieux ME. Receptors, g proteins, and their interactions. Anesthesiology 2005; 103: 1066-78. https://doi.org/10.1097/00000542-200511000-00022
  39. Werdehausen R, Braun S, Essmann F, Schulze-Osthoff K, Walczak H, Lipfert P, et al. Lidocaine induces apoptosis via the mitochondrial pathway independently of death receptor signaling. Anesthesiology 2007; 107: 136-43. https://doi.org/10.1097/01.anes.0000268389.39436.66
  40. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002; 2: 647-56. https://doi.org/10.1038/nrc883
  41. King D, Yeomanson D, Bryant HE. PI3King the lock: targeting the PI3K/Akt/mTOR pathway as a novel therapeutic strategy in neuroblastoma. J Pediatr Hematol Oncol 2015; 37: 245-51. https://doi.org/10.1097/MPH.0000000000000329
  42. Dasari VR, Veeravalli KK, Saving KL, Gujrati M, Fassett D, Klopfenstein JD, et al. Neuroprotection by cord blood stem cells against glutamate-induced apoptosis is mediated by Akt pathway. Neurobiol Dis 2008; 32: 486-98. https://doi.org/10.1016/j.nbd.2008.09.005
  43. Ma R, Wang X, Lu C, Li C, Cheng Y, Ding G, et al. Dexamethasone attenuated bupivacaine- induced neuron injury in vitro through a threonine-serine protein kinase B-dependent mechanism. Neuroscience 2010; 167: 329-42. https://doi.org/10.1016/j.neuroscience.2009.12.049
  44. Wang Z, Shen J, Wang J, Lu T, Li C, Zhang X, et al. Lithium attenuates bupivacaine-induced neurotoxicity in vitro through phosphatidylinositol-3-kinase/threonineserine protein kinase B- and extracellular signal-regulated kinase-dependent mechanisms. Neuroscience 2012; 206: 190-200. https://doi.org/10.1016/j.neuroscience.2011.12.043
  45. Obata K, Yamanaka H, Dai Y, Mizushima T, Fukuoka T, Tokunaga A, et al. Differential activation of MAPK in injured and uninjured drg neurons following chronic constriction injury of the sciatic nerve in rats. Eur J Neurosci 2004; 20: 2881-95. https://doi.org/10.1111/j.1460-9568.2004.03754.x
  46. Park JY, Kim EJ, Kwon KJ, Jung YS, Moon CH, Lee SH, et al. Neuroprotection by fructose-1,6- bisphosphate involves ROS alterations via p38 MAPK/ERK. Brain Res 2004; 1026: 295-301. https://doi.org/10.1016/j.brainres.2004.08.039
  47. Horstmann S, Kahle PJ, Borasio GD. Inhibitors of p38 mitogen-activated protein kinase promote neuronal survival in vitro. J Neurosci Res 1998; 52: 483-90. https://doi.org/10.1002/(SICI)1097-4547(19980515)52:4<483::AID-JNR12>3.0.CO;2-4
  48. Haller I, Hausott B, Tomaselli B, Keller C, Klimaschewski L, Gerner P, et al. Neurotoxicity of lidocaine involves specific activation of the p38 mitogen-activated protein kinase, but not extracellular signal-regulated or c-jun n-terminal kinases, and is mediated by arachidonic acid metabolites. Anesthesiology 2006; 105: 1024-33. https://doi.org/10.1097/00000542-200611000-00025