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During dental treatment, a dentist usually applies the local anesthesia. Therefore, all dentists should have expertise 
in local anesthesia and anesthetics. Local anesthetics have a neurotoxic effect at clinically relevant concentrations. 
Many studies have investigated the mechanism of neurotoxicity of local anesthetics but the precise mechanism 
of local anesthetic-induced neurotoxicity is still unclear. In addition, it is difficult to demonstrate the direct 
neurotoxic effect of local anesthetics because perioperative nerve damage is influenced by various factors, such 
as the anesthetic, the patient, and surgical risk factors. This review summarizes knowledge about the pharmacology 
of local anesthetics, nerve anatomy, and the incidence, risk factors, and possible cellular mechanisms of local 
anesthetic-induced neurotoxicity. 
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INTRODUCTION

  In the dental clinic, local anesthesia is an inevitable 
procedure to carry out various dental treatments. During 
local infiltration and peripheral nerve blocks, local 
anesthetics reversibly block the action potentials of 
neuronal voltage-gated sodium channels and induce 
analgesia and anesthesia [1]. However, local anesthetics 
may cause nerve damage and have a toxic effect on 
various cell types [2,3]. Furthermore, local anesthetic- 
induced cytotoxicity in many types of cells occurs at 
clinically relevant concentrations [4-6]. However, the 
ascertainment of the direct neurotoxic effect of local 
anesthetics is difficult and complex because perioperative 
nerve damage can arise from many clinical factors. The 
incidence of local anesthetic-induced neurotoxicity varies 

depending on the type of surgery, anesthetic technique, 
and patient factors [7,8].  
  In this review, we aimed to summarize knowledge 
about the pharmacology of local anesthetics and the 
incidence, risk factors, and mechanisms of neurotoxicity 
caused by local anesthetics. 

PHARMACOLOGY OF LOCAL ANESTHETICS IN 
DENTISTRY

  Structurally, local anesthetics consist of a lipophilic 
aromatic group, a hydrophilic group, and an amide or 
ester linkage chain; local anesthetics are divided into 
amino-amide or amino-ester type [9]. The amide class 
of local anesthetics in dental cartridges includes lidocaine, 
articaine, bupivacaine, mepivacaine, and prilocaine. The 
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ester class includes benzocaine. 
  The onset and duration of local anesthetic action are 
affected by various factors. Local anesthetics are 
deposited extracellularly in a state of equilibrium between 
the unionized and ionized form after injection, which is 
affected by the pH of the surrounding tissue and pKa 
of the drug. The unionized form crosses the lipid bilayer 
of the neuronal membrane and blocks voltage-gated 
sodium channels. There are no significant differences in 
the pKa among the amide class of local anesthetics, 
except for bupivacaine, which has a slightly higher pKa, 
leading to a slow onset of action. High lipid solubility 
promotes the onset of local anesthesia to a certain degree 
[10-12]. Local anesthetics with higher degrees of protein 
binding have a longer duration of action. Bupivacaine 
provides a long duration of anesthesia in soft tissue in 
the arches and pulp of mandibular teeth [13].  

NERVE ANATOMY

  To discuss the neurotoxicity of local anesthetics, it is 
necessary to become well-acquainted with the anatomy 
of a nerve. Nerve fibers are surrounded by the endo-
neurium, which is a layer of loose connective tissue and 
Schwann cells. The endoneurium contains glial cells, 
fibroblasts, and blood vessel capillaries. Multiple nerve 
fibers are bundled into fascicles. The fascicle is surrounded 
by a perineurium, which is a dense layer of collagenous 
connective tissue. The peripheral nerve is formed with 
multiple fascicles and is encircled by the epineurium, 
which is the outermost layer of the peripheral nerve and 
contains arteries, arterioles, and veins. The epineurium 
acts as a blood-nerve barrier and protects the nerve from 
local anesthetics and other chemical injuries [14].    

INCIDENCE OF NEUROTOXICITY OF LOCAL 
ANESTHETICS

  It is difficult to estimate the actual incidence of neuro-

toxicity of local anesthetics because many confounding 
risk factors lead to nerve injury during the perioperative 
period. In large prospective studies of peripheral nerve 
block, the incidence of neurological complications with 
peripheral nerve block is < 3%. Most of these compli-
cations are transient sensory deficits, and permanent 
nerve injury is rare [15-17]. Other studies on neurological 
complications with peripheral nerve block have shown 
that the risk of nerve injury is between 0.02% and 0.5%. 
The incidences of neurotoxicity of local anesthetics vary 
among studies because the estimation of the incidence 
of neurotoxicity of local anesthetics is influenced by the 
methods used to measure anesthetic-related neurological 
complications [16,17]. Urban and Urquhart estimated that 
the incidence of neurological deficits is 3–5% after a 
survey of the neurological deficits 2 weeks after a brachial 
plexus block. However, the incidence of neurological 
deficits beyond 4 weeks is only 0.4% [18]. There is a 
higher risk of prolonged paraesthesia after the administ-
ration of 4% articaine when than after the administration 
of other anesthetics [19,20]. Hillerup et al. [19] reported 
that 4% articaine causes neurosensory disturbances to two 
trigeminal branches. In addition, neurosensory distur-
bances associated with 4% articaine are related mainly 
to mandibular blocks.

RISK FACTORS FOR NEUROTOXICITY OF LOCAL 
ANESTHETICS IN DENTISTRY

  The risk factors involved in the neurotoxicity of local 
anesthetics can be categorized into anesthetic and patient 
factors.

1. Anesthetic factors

  Peripheral nerve block is an independent risk factor for 
the neurotoxicity of local anesthetics [21]. Additionally, 
the location of the injection influences the incidence of 
local anesthetic-induced peripheral nerve injury. A recent 
study has shown that local anesthetic-related peripheral 
nerve injury is most severe with intrafascicular injection 
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and lower with extrafascicular deposition. This suggests 
that the early direct exposure of nerve to a high concen-
tration of local anesthetic can increase neurotoxicity 
[22,23]. 
  Direct stimulation of the peripheral nerve with a needle 
during a local anesthetic injection can trigger direct nerve 
perforation and injury to the fascicle and perineurium. 
In addition, nerve injury is affected by the size and type 
of needle. A long-beveled needle is more likely to cause 
nerve punctures but more severe nerve injuries are caused 
by short-beveled needles [24].
  High injection pressure of local anesthetics can 
increase the peripheral nerve injuries. Intraneural needle 
placement is indicated by a high injection pressure at the 
onset of injection, which leads to severe fascicular injury 
and persistent neurological deficits in dogs [25].  

2. Patient factors

  Patients with pre-existing neuropathies, such as diabetic 
peripheral neuropathy, Guillain‐Barre syndrome, post- 
polio syndrome, and multiple sclerosis, are susceptible 
to local anesthetic-induced nerve injury [26]. In addition, 
all medical conditions that influence the microvascu-
lature, such as peripheral vascular diseases, vasculitis, 
smoking, and hypertension, increase the vulnerability of 
nerves to ischemia and lead to an increase in local 
anesthetic-induced neurotoxicity during the perioperative 
period [22].

PATHOPHYSIOLOGY AND CELLULAR 
MECHANISMS OF NEUROTOXICITY OF LOCAL 
ANESTHETICS

  Chemical nerve injury is caused by the toxicity of a 
solution or its additives. An in vitro study has shown that 
all local anesthetics have neurotoxic effects and the 
degree of neurotoxicity increases concentration-depen-
dently [27]. The concentration of local anesthetics has 
decreased over time and the highest concentration of 
lidocaine and bupivacaine used currently is 2% and 0.5%, 

respectively. Studies that have investigated the toxicity 
of various local anesthetics have suggested that lidocaine 
is more toxic than equipotent concentrations of bupi-
vacaine [28,29]. However, other studies have reported 
that there is no significant difference in toxicity among 
local anesthetics [27,30].
  The vasoconstrictive effect of local anesthetics can 
aggravate nerve damage via ischemia and this damage 
can be aggravated further with adjuvant epinephrine. 
Vasoconstriction owing to local anesthetics with epi-
nephrine prolongs the exposure of nerves to local 
anesthetics and reduces blood flow, which leads to a high 
risk of ischemic nerve damage [3]. After periods of 
ischemia, oxidative injury accompanied by reperfusion 
results in neuronal damage via the initiation of apoptosis.
  The cellular mechanisms of local anesthetic-induced 
neurotoxicity have not been well clarified. Some studies 
have reported that DNA fragmentation, mitochondrial 
dysfunction, and endoplasmic reticulum calcium depletion 
are caused by local anesthetics. These processes result 
in the release of cytochrome c and activation of the 
caspase pathway, which leads to neuronal apoptosis 
[31-36]. The cellular mechanisms involved in local 
anesthetic-induced neurotoxicity include the intrinsic 
caspase, phosphoinositide 3-kinase (PI3K), and mitogen- 
activated protein kinase (MAPK) pathways (Fig. 1). The 
voltage-gated sodium channel, a primary target of local 
anesthetics, and G-protein coupled receptors, a target for 
the systemic anti-inflammatory effect of local anesthetics, 
are unlikely to be involved in the pathophysiology of 
local anesthetic-induced neurotoxicity [37,38].

1. Intrinsic caspase pathways

  Extrinsic and intrinsic caspase pathways play a central 
role in apoptosis. Werdehausen et al. [39] demonstrated 
that lidocaine induces apoptosis via cytochrome c release 
and apoptosis by lidocaine is strongly reduced by B-cell 
lymphoma 2 (bcl-2) overexpression and caspase-9 
deficiency in the Jurkat cell line. This study suggests that 
lidocaine induces apoptosis via the activation of the 
intrinsic caspase pathway. The intrinsic caspase pathway 
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Fig. 1. Schematic diagram for the cellular mechanism of neurotoxicity of local anesthetics. The intrinsic caspase pathway, PI3K pathway, and MAPK
pathway are reliable signaling pathways in the neurotoxicity of local anesthetics. Fas-associated protein with death domain (FADD); death-inducing
signaling complex (DISC); phosphoinositide-3-kinase (PI3K); mitogen-activated protein kinase (MAPK).

is activated by the cytochrome c release and leads to cell 
apoptosis. The release of cytochrome c is offset by the 
activation of the bcl family [40].  

2. PI3K pathway

  The PI3K family is involved in an intracellular 
signaling pathway that promotes cell survival, growth, 
proliferation, and metabolism and angiogenesis. The 
activation of PI3K phosphorylates and activates serine- 
threonine protein kinase B (Akt), an enzyme for 
protection from apoptosis [41,42]. Some studies have 
investigated the relevance of the PI3K pathway in the 
neurotoxicity of local anesthetics. Ma et al. showed that 
pretreatment with dexamethasone significantly attenuates 
bupivacaine- and lidocaine-induced cell injury, prevents 
the decline in mitochondrial membrane potential caused 
by bupivacaine, and increases Akt phosphorylation. These 
protective effects of dexamethasone against bupivacaine- 

induced cell injury are suppressed by the pharmacological 
inhibition of Akt, which suggests that dexamethasone has 
a protective effect against bupivacaine-induced neuronal 
cell injury through the Akt signaling pathway [43]. In 
another study, it was shown that lithium attenuates 
bupivacaine-induced neurotoxicity through the activation 
of the PI3K/Akt pathway in mouse neuroblastoma cells 
[44].    

3. MAPK pathway 

  Wang et al. [44] demonstrated that lithium provides 
a protective effect against bupivacaine-induced neuro-
toxicity via the activation of the extracellular signal- 
regulated kinase (ERK) signaling pathway. ERK is a 
member of the MAPK family. However, other studies 
have reported that the inhibition of p38 MAPK or ERK 
has a potential therapeutic effect against a chronic 
constriction nerve injury model, metabolic injury, and 
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excitotoxicity [45-47]. Haller et al. [48] showed that 
lidocaine-induced neurotoxicity is mediated by the 
specific activation of p38 MAPK but not that of ERK 
or c-Jun N-terminal kinase. In addition, the neuropro-
tective effect of p38 MAPK inhibitors decreases after 
more than 1 h of lidocaine administration, which suggests 
that lidocaine-induced neurotoxicity involves the specific 
and time-dependent activation of p38 MAPK. 

CONCLUSIONS

  It is difficult to discriminate the specific neurotoxic 
effect of local anesthetics because many factors can affect 
nerve damage during the perioperative period. In clinical 
settings, most nerve damages induced by local anesthesia 
are transient sensory defects and permanent nerve damage 
rarely occurs. However, permanent nerve damage can be 
fatal in a minority of patients with local anesthetic- 
induced permanent nerve damage. Therefore, it is essential 
to prevent local anesthetic-induced nerve damage. To 
prevent the neurotoxicity of local anesthetics, intra-
fascicular and high pressure injections should be avoided. 
Additionally, the use of the lowest effective concen-
tration, the lowest effective volume, short-acting local 
anesthetics, and small needles is recommended. Finally, 
patients with comorbid, pre-existing neuropathies and 
vascular diseases require additional attention from their 
dentist regarding local anesthetic-induced nerve damage.
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