Acknowledgement
Supported by : Augusta University
The author acknowledges the valuable comments from anonymous reviewers and the support from Augusta University.
References
- W. Bao and C. Su, Uniform error estimates of a finite difference method for the Klein-Gordon-Schrodinger system in the nonrelativistic and massless limit regimes, Kinetic and Related Models, 11 (2018), 1037-1062. https://doi.org/10.3934/krm.2018040
- J. Cai, J. Hong and Y.Wang, Local energy and momentum-preserving schemes for Klein-Gordon-Schrodinger equations and convergence analysis, Numerical Methods for Partial Differential Equations, 33 (2017), 1329-1351. https://doi.org/10.1002/num.22145
- L. Kong, M. Chen and X. Yin, A novel kind of efficient symplectic scheme for Klein-Gordon-Schrodinger equation, Applied Numerical Mathematics, 135 (2019), 481-496. https://doi.org/10.1016/j.apnum.2018.09.005
-
T. Wang, X. Zhao and J. Jiang, Unconditional and optimal
$H^2$ -error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schrodinger equation in high dimensions, Advances in Computational Mathematics, 44 (2018), 477-503. https://doi.org/10.1007/s10444-017-9557-5 - W. Bao and L. Yang, Efficient and accurate numerical methods for the Klein-Gordon-Schrodinger equations, Journal of Computational Physics, 225 (2007), 1863-1893. https://doi.org/10.1016/j.jcp.2007.02.018
- W. Bao and X. Zhao, A uniformly accurate multiscale time integrator Fourier pseudospectral method for the Klein-Gordon-Schrodinger equations in the nonrelativistic limit regime, Numerische Mathematik, 135 (2017), 833-873. https://doi.org/10.1007/s00211-016-0818-x
- M. Dehghan and A. Taleei, Numerical solution of the Yukawa-coupled Klein-Gordon-Schrodinger equations via a Chebyshev pseudospectral multidomain method, Applied Mathematical Modelling, 36 (2012), 2340-2349. https://doi.org/10.1016/j.apm.2011.08.030
- Q. Hong, Y. Wang and J. Wang, Optimal error estimate of a linear Fourier pseudo-spectral scheme for two dimensional Klein-Gordon-Schrodinger equations, Journal of Mathematical Analysis and Applications, 468 (2018), 817-838. https://doi.org/10.1016/j.jmaa.2018.08.045
- L. Kong, J. Zhang, Y. Cao, Y. Duan and H. Huang, Semi-explicit symplectic partitioned Runge-Kutta Fourier pseudo-spectral scheme for Klein-Gordon-Schrodinger equations, Computer Physics Communications, 181 (2010), 1369-1377. https://doi.org/10.1016/j.cpc.2010.04.003
- H. Liang, Linearly implicit conservative schemes for long-term numerical simulation of Klein-Gordon-Schrodinger equations, Applied Mathematics and Computation, 238 (2014), 475-484. https://doi.org/10.1016/j.amc.2014.04.032
- J. Wang, Y. Wang and D. Liang, Analysis of a Fourier pseudo-spectral conservative scheme for the Klein-Gordon-Schrodinger equation, International Journal of Computer Mathematics, 95 (2018), 36-60. https://doi.org/10.1080/00207160.2017.1366460
- J. Hong, S. Jiang and C. Li, Explicit multi-symplectic methods for Klein-Gordon-Schrodinger equations, Journal of Computational Physics, 228 (2009), 3517-3532. https://doi.org/10.1016/j.jcp.2009.02.006
- J. Zhang and L. Kong, New energy-preserving schemes for Klein-Gordon-Schrodinger equations, Applied Mathematical Modelling, 40 (2016), 6969-6982. https://doi.org/10.1016/j.apm.2016.02.026
- M. Dehghan and V. Mohammadi, Two numerical meshless techniques based on radial basis functions (RBFs) and the method of generalized moving least squares (GMLS) for simulation of coupled Klein-Gordon-Schrodinger (KGS) equations, Computer and Mathematics with Applications, 71 (2016), 892-921. https://doi.org/10.1016/j.camwa.2015.12.033
- S. Wang and L. Zhang, A class of conservative orthogonal spline collocation schemes for solving coupled Klein-Gordon-Schrodinger equations, Applied Mathematics and Computation, 203 (2008), 799-812. https://doi.org/10.1016/j.amc.2008.05.089
- H. Yang, Error estimates for a class of energy- and Hamiltonian-preserving local discontinuous Galerkin methods for the Klein-Gordon-Schrodinger equations, Journal of Applied Mathematics and Computing, 62 (2020), 377-424. https://doi.org/10.1007/s12190-019-01289-4
- B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM Journal on Numerical Analysis, 35 (1998), 2440-2463. https://doi.org/10.1137/S0036142997316712
- J. Yan and C.-W. Shu, A local discontinuous Galerkin method for KdV-type equations, SIAM Journal on Numerical Analysis, 40 (2002), 769-791. https://doi.org/10.1137/S0036142901390378
- J. Yan and C.-W. Shu, Local discontinuous Galerkin methods for partial differential equations with higher order Derivatives, Journal of Scientific Computing, 17 (2002), 27-47. https://doi.org/10.1023/A:1015132126817
- C.-S. Chou, W. Sun, Y. Xing and H. Yang, Local discontinuous Galerkin methods for the Khokhlov-Zabolotskaya-Kuznetzov equation, Journal of Scientific Computing, 73 (2017), 593-616. https://doi.org/10.1007/s10915-017-0502-z
- Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for two classes of two-dimensional nonlinear wave equations, Physica D, 208 (2005), 21-58. https://doi.org/10.1016/j.physd.2005.06.007
- Y. Xing, C.-S. Chou and C.-W. Shu, Energy conserving local discontinuous Galerkin methods for wave propagation problems, Inverse Problems and Imaging, 7 (2013), 967-986. https://doi.org/10.3934/ipi.2013.7.967
- R. Zhang, X. Yu, M. Li and X. Li, A conservative local discontinuous Galerkin method for the solution of nonlinear Schrodinger equation in two dimensions, Science China Mathematics, 60 (2017), 2515-2530. https://doi.org/10.1007/s11425-016-9118-x
- H. Yang, High-order energy and linear momentum conserving methods for the Klein-Gordon equation, Mathematics, 6 (2018), 200. https://doi.org/10.3390/math6100200
- H. Yang and F. Li, Error estimates of Runge-Kutta discontinuous Galerkin methods for the Vlasov-Maxwell system, ESAIM: Mathematical Modelling and Numerical Analysis, 49 (2015), 69-99. https://doi.org/10.1051/m2an/2014025
- H. Yang, F. Li and J. Qiu, Dispersion and dissipation errors of two fully discrete discontinuous Galerkin methods, Journal of Scientific Computing, 55 (2013), 552-574. https://doi.org/10.1007/s10915-012-9647-y