DOI QR코드

DOI QR Code

ON A FAMILY OF COHOMOLOGICAL DEGREES

  • Cuong, Doan Trung (Institute of Mathematics and the Graduate University of Science and Technology Vietnam Academy of Science and Technology) ;
  • Nam, Pham Hong (College of Sciences Thai Nguyen University)
  • Received : 2019.04.28
  • Accepted : 2019.10.23
  • Published : 2020.05.01

Abstract

Cohomological degrees (or extended degrees) were introduced by Doering, Gunston and Vasconcelos as measures for the complexity of structure of finitely generated modules over a Noetherian ring. Until now only very few examples of such functions have been known. Using a Cohen-Macaulay obstruction defined earlier, we construct an infinite family of cohomological degrees.

Keywords

Acknowledgement

Supported by : Vietnam National Foundation for Science and Technology Development (NAFOSTED)

The authors thank the anonymous referee for careful reading and many useful comments which help to improve the paper.

References

  1. M. Auslander and D. A. Buchsbaum, Codimension and multiplicity, Ann. of Math. (2) 68 (1958), 625-657. https://doi.org/10.2307/1970159
  2. M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, Cambridge, 1998. https://doi.org/10.1017/CBO9780511629204
  3. D. T. Cuong, p-standard systems of parameters, localizations and local cohomology modules, Proceedings of the 3th Japan-Vietnam joint seminar on Commutative Algebra, 66-78, Hanoi 2007.
  4. D. T. Cuong and P. H. Nam, Hilbert coefficients and partial Euler-Poincare characteristics of Koszul complexes of d-sequences, J. Algebra 441 (2015), 125-158. https://doi.org/10.1016/j.jalgebra.2015.06.024
  5. N. T. Cuong, p-standard systems of parameters and p-standard ideals in local rings, Acta Math. Vietnam. 20 (1995), no. 1, 145-161.
  6. N. T. Cuong and D. T. Cuong, dd-sequences and partial Euler-Poincare characteristics of Koszul complex, J. Algebra Appl. 6 (2007), no. 2, 207-231. https://doi.org/10.1142/S0219498807002119
  7. N. T. Cuong and D. T. Cuong, On sequentially Cohen-Macaulay modules, Kodai Math. J. 30 (2007), no. 3, 409-428. http://projecteuclid.org/euclid.kmj/1193924944 https://doi.org/10.2996/kmj/1193924944
  8. N. T. Cuong and D. T. Cuong, On the structure of sequentially generalized Cohen-Macaulay modules, J. Algebra 317 (2007), no. 2, 714-742. https://doi.org/10.1016/j.jalgebra.2007.06.026
  9. N. T. Cuong and D. T. Cuong, Local cohomology annihilators and Macaulayfication, Acta Math. Vietnam. 42 (2017), no. 1, 37-60. https://doi.org/10.1007/s40306-016-0185-9
  10. N. T. Cuong and L. T. Nhan, Pseudo Cohen-Macaulay and pseudo generalized Cohen-Macaulay modules, J. Algebra 267 (2003), no. 1, 156-177. https://doi.org/10.1016/S0021-8693(03)00225-4
  11. N. T. Cuong and P. H. Quy, On the structure of finitely generated modules over quotients of Cohen-Macaulay local rings, Preprint (2017): arXiv:1612.07638.
  12. L. R. Doering, T. Gunston, and W. V. Vasconcelos, Cohomological degrees and Hilbert functions of graded modules, Amer. J. Math. 120 (1998), no. 3, 493-504. https://doi.org/10.1353/ajm.1998.0019
  13. T. K. Gunston, Cohomological degrees, Dilworth numbers and linear resolution, Pro-Quest LLC, Ann Arbor, MI, 1998.
  14. H. Matsumura, Commutative Ring Theory, translated from the Japanese by M. Reid, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1986.
  15. P. Schenzel, On the dimension filtration and Cohen-Macaulay filtered modules, in Commutative algebra and algebraic geometry (Ferrara), 245-264, Lecture Notes in Pure and Appl. Math., 206, Dekker, New York, 1999. https://doi.org/10.1090/conm/239/03606
  16. R. P. Stanley, Combinatorics and Commutative Algebra, second edition, Progress in Mathematics, 41, Birkhauser Boston, Inc., Boston, MA, 1996.
  17. N. V. Trung, Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math. J. 102 (1986), 1-49. https://doi.org/10.1017/s0027763000000416
  18. W. V. Vasconcelos, The homological degree of a module, Trans. Amer. Math. Soc. 350 (1998), no. 3, 1167-1179. https://doi.org/10.1090/S0002-9947-98-02127-8
  19. W. V. Vasconcelos, Cohomological degrees of graded modules, in Six lectures on commutative algebra (Bellaterra, 1996), 345-392, Progr. Math., 166, Birkhauser, Basel, 1998.
  20. W. V. Vasconcelos, Cohomological Degrees and Applications. I, Commutative Algebra, Expository papers dedicated to David Eisenbud on the occasion of his 65th birthday, (I. Peeva, editor), 667-707, Springer, 2013.
  21. W. V. Vasconcelos, Complexity degrees of algebraic structures, Preprint (2015), 323 pages. arXiv:1402.1906[math.AC]