Acknowledgement
Supported by : Vietnam National Foundation for Science and Technology Development (NAFOSTED)
The authors thank the anonymous referee for careful reading and many useful comments which help to improve the paper.
References
- M. Auslander and D. A. Buchsbaum, Codimension and multiplicity, Ann. of Math. (2) 68 (1958), 625-657. https://doi.org/10.2307/1970159
- M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, Cambridge, 1998. https://doi.org/10.1017/CBO9780511629204
- D. T. Cuong, p-standard systems of parameters, localizations and local cohomology modules, Proceedings of the 3th Japan-Vietnam joint seminar on Commutative Algebra, 66-78, Hanoi 2007.
- D. T. Cuong and P. H. Nam, Hilbert coefficients and partial Euler-Poincare characteristics of Koszul complexes of d-sequences, J. Algebra 441 (2015), 125-158. https://doi.org/10.1016/j.jalgebra.2015.06.024
- N. T. Cuong, p-standard systems of parameters and p-standard ideals in local rings, Acta Math. Vietnam. 20 (1995), no. 1, 145-161.
- N. T. Cuong and D. T. Cuong, dd-sequences and partial Euler-Poincare characteristics of Koszul complex, J. Algebra Appl. 6 (2007), no. 2, 207-231. https://doi.org/10.1142/S0219498807002119
- N. T. Cuong and D. T. Cuong, On sequentially Cohen-Macaulay modules, Kodai Math. J. 30 (2007), no. 3, 409-428. http://projecteuclid.org/euclid.kmj/1193924944 https://doi.org/10.2996/kmj/1193924944
- N. T. Cuong and D. T. Cuong, On the structure of sequentially generalized Cohen-Macaulay modules, J. Algebra 317 (2007), no. 2, 714-742. https://doi.org/10.1016/j.jalgebra.2007.06.026
- N. T. Cuong and D. T. Cuong, Local cohomology annihilators and Macaulayfication, Acta Math. Vietnam. 42 (2017), no. 1, 37-60. https://doi.org/10.1007/s40306-016-0185-9
- N. T. Cuong and L. T. Nhan, Pseudo Cohen-Macaulay and pseudo generalized Cohen-Macaulay modules, J. Algebra 267 (2003), no. 1, 156-177. https://doi.org/10.1016/S0021-8693(03)00225-4
- N. T. Cuong and P. H. Quy, On the structure of finitely generated modules over quotients of Cohen-Macaulay local rings, Preprint (2017): arXiv:1612.07638.
- L. R. Doering, T. Gunston, and W. V. Vasconcelos, Cohomological degrees and Hilbert functions of graded modules, Amer. J. Math. 120 (1998), no. 3, 493-504. https://doi.org/10.1353/ajm.1998.0019
- T. K. Gunston, Cohomological degrees, Dilworth numbers and linear resolution, Pro-Quest LLC, Ann Arbor, MI, 1998.
- H. Matsumura, Commutative Ring Theory, translated from the Japanese by M. Reid, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1986.
- P. Schenzel, On the dimension filtration and Cohen-Macaulay filtered modules, in Commutative algebra and algebraic geometry (Ferrara), 245-264, Lecture Notes in Pure and Appl. Math., 206, Dekker, New York, 1999. https://doi.org/10.1090/conm/239/03606
- R. P. Stanley, Combinatorics and Commutative Algebra, second edition, Progress in Mathematics, 41, Birkhauser Boston, Inc., Boston, MA, 1996.
- N. V. Trung, Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math. J. 102 (1986), 1-49. https://doi.org/10.1017/s0027763000000416
- W. V. Vasconcelos, The homological degree of a module, Trans. Amer. Math. Soc. 350 (1998), no. 3, 1167-1179. https://doi.org/10.1090/S0002-9947-98-02127-8
- W. V. Vasconcelos, Cohomological degrees of graded modules, in Six lectures on commutative algebra (Bellaterra, 1996), 345-392, Progr. Math., 166, Birkhauser, Basel, 1998.
- W. V. Vasconcelos, Cohomological Degrees and Applications. I, Commutative Algebra, Expository papers dedicated to David Eisenbud on the occasion of his 65th birthday, (I. Peeva, editor), 667-707, Springer, 2013.
- W. V. Vasconcelos, Complexity degrees of algebraic structures, Preprint (2015), 323 pages. arXiv:1402.1906[math.AC]