
J. Korean Math. Soc. 57 (2020), No. 3, pp. 669–689
https://doi.org/10.4134/JKMS.j190305
pISSN: 0304-9914 / eISSN: 2234-3008

ON A FAMILY OF COHOMOLOGICAL DEGREES

Đoàn Trung Cường and Phạm Hồng Nam

Abstract. Cohomological degrees (or extended degrees) were introduc-
ed by Doering, Gunston and Vasconcelos as measures for the complexity
of structure of finitely generated modules over a Noetherian ring. Until
now only very few examples of such functions have been known. Using
a Cohen-Macaulay obstruction defined earlier, we construct an infinite
family of cohomological degrees.

1. Introduction

A homological degree is a function from the category of finitely generated
modules over a local or a graded Noetherian ring to integers. This notion of
degree has been given by Vasconcelos [18] as a measure for the complexity of
the algebraic structure of the ring and modules over it. Using homological
degree Vasconcelos obtained upper bounds for several numerical invariants of
a finitely generated module such as the minimal number of generators, Hilbert
coefficients, Betti numbers, Castelnuovo-Mumford regularity, etc (see [12, 18–
21]). This notion has been extended by Doering-Gunston-Vasconcelos [12] to
a more abstract notion of cohomological degree.
Definition 1.1 (Cohomological degree). Let (R,m) be a commutative Noe-
therian local ring and ModR be the category of finitely generated R-modules.
A cohomological degree (or extended degree) of R is a function

Deg : ModR → R≥0

such that for a finitely generated R-module M ,
(a) Deg(M) = Deg(M/H0

m(M)) + `(H0
m(M)), where Hi

m(M) is the i-th local
cohomology module of M with respect to m;

(b) (Bertini’s rule) If depth(M) > 0 and x ∈ m is a generic hyperplane section
of M , then

Deg(M) ≥ Deg(M/xM);
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(c) (The calibration rule) If M is Cohen-Macaulay, then

Deg(M) = e(M),

where e(M) is the ordinary multiplicity ofM relative to the maximal ideal.

So if M is Artinian, then Deg(M) = `(H0
m(M)). If dim(M) = 1, then

Deg(M) = e(M) + `(H0
m(M)) which is unique.

The first example of a cohomological degree is the homological degree given
by Vasconcelos [18, Theorem 2.13].

Definition 1.2 (Homological degree). Suppose that R is a quotient of a Goren-
stein local ring S. The homological degree of a finitely generated R-moduleM ,
denoted by hdeg(M), is defined recursively by

hdeg(M) = e(M) +

d−1∑
j=0

(
d− 1

j

)
hdeg(Exts−d+1+j

S (M,S)),

where s = dimS and d = dimM .

If in addition S is a complete local ring of the same dimension as M and
E = ES(k) is the injective envelop of the residue field, then

hdeg(M) = e(M) +

d−1∑
j=0

(
d− 1

j

)
hdeg(HomS(Hj

m(M), E)).

Two other known examples of cohomological degrees consist of extremal
degree bdeg defined by Gunston [13] and unmixed degree udeg defined by N.
T. Cuong-P. H. Quy [11].

The main aim of this paper is to construct an infinite family of cohomological
degrees for a local ring by using the idea in the construction of N. T. Cuong-P.
H. Quy. For this purpose we use the colon modules associated to a so-called
almost p-standard system of parameters of a module given in [4]. These colon
modules are obstruction for the Cohen-Macaulayness of the module (see Section
2). On the other hand, almost p-standard systems of parameters always exist
if the ground ring is a quotient of a Cohen-Macaulay ring. So the family of
cohomological degrees obtained in our construction exists for a quite large class
of rings and modules.

Throughout this paper, (R,m, k) is a quotient of a Cohen-Macaulay local
ring with an infinite residue field. For unexplained terminologies and basic
results in commutative algebra and local cohomology, we refer to the books of
Matsumura [14] and Brodmann-Sharp [2].

Acknowledgments. The authors thank the anonymous referee for careful
reading and many useful comments which help to improve the paper.
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2. A Cohen-Macaulay obstruction

There are several well-known obstructions for a module M to be Cohen-
Macaulay such as the local cohomology module Hi

m(M), i < dim(M), or the
non-Cohen-Macaulay locus nCM(M) ofM . In [4, Proposition 3.9] another kind
of Cohen-Macaulay obstruction has been defined as a set of several subquotients
of the module itself. In this section we investigate further these obstructions.

Let M be a finitely generated R-module. Let d = dim(M). We denote
ai(M) = AnnR(Hi

m(M)) and put a(M) = a0(M)a1(M) · · · ad−1(M). We have
dim(R/a(M)) < d as the base ring is a quotient of a Cohen-Macaulay local ring.
Hence M admits a system of parameters x1, . . . , xd such that xd ∈ a(M) and
xi ∈ a(M/(xi+1, . . . , xd)M) for i < d (see [9, Theorem 1.3]). Then x1, . . . , xd
is called a p-standard system of parameters of the module M . This notion
was first introduced by N. T. Cuong in [5]. It plays a key role in the study
of singularity of Cohen-Macaulay type of Noetherian rings and modules in the
works of T. Kawasaki, N. T. Cuong-D. T. Cuong, N. T. Cuong-P. H. Quy, D. T.
Cuong-P. H. Nam. In [4] the authors defined the notion of almost p-standard
system of parameters extending slightly this notion.

Definition 2.1. Let M be a finitely generated R-module. A system of param-
eters x1, . . . , xd of M is almost p-standard if

`(M/(xn1
1 , . . . , xnd

d )M) =

d∑
i=0

λin1 · · ·ni

for given numbers λ0, . . . , λd and for all n1, . . . , nd > 0.

We collect some important properties of almost p-standard systems of pa-
rameters from [3,6, 7] for later usage.

Remark 2.2. Let M be a finitely generated R-module of dimension d.
(a) [6, Corollary 3.6] Actually the coefficient λi of the length function in Defi-

nition 2.1 is the multiplicity of certain subquotient modules, namely,

λi = e(x1, . . . , xi; (0 : xi+1)M/(xi+2,...,xd)M ).

(b) [6, Corollary 3.6] A system of parameters x1, . . . , xd of M is almost p-
standard if and only if xn1

1 , . . . , xni
i is a d-sequence onM/(x

ni+1

i+1 , . . . , x
nd

d )M
for i = 1, . . . , d and for all n1, . . . , nd > 0. We recall that due to Huneke,
a sequence x1, . . . , xs ∈ m is a d-sequence on M if (x1, . . . , xi−1)M : xj =
(x1, . . . , xi−1)M : xixj for i = 1, . . . , s, and j ≥ i.

(c) [6, Corollary 3.5] Let x1, . . . , xd be an almost p-standard system of pa-
rameters of M and 0 < i1 < · · · < ir ≤ d be some indexes. Then
xi1 , . . . , xir is an almost p-standard system of parameters of M/IM where
I = (xj : j 6= i1, . . . , ir).

(d) [6, Corollary 3.9] A p-standard system of parameters is almost p-standard.
Conversely, if x1, . . . , xd is an almost p-standard system of parameters,
then xn1

1 , . . . , xnd

d is p-standard for all n1 ≥ 1, n2 ≥ 2, . . . , nd ≥ d.
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The next results give a set of subquotients of a module which can be regarded
as an obstruction to the Cohen-Macaulayness of the module. These subquo-
tients will be essential in our construction of cohomological degrees later.

Proposition 2.3 ([4, Proposition 3.2 and Corollary 3.5]). Let M be a finitely
generated R-module of dimension d > 0. Let x1, . . . , xd be an almost p-standard
system of parameters of M and let 0 ≤ i < j ≤ d.

(a) The subquotient

(x
ni+2

i+2 , . . . , x
nj

j )M : xi+1/(x
ni+2

i+2 , . . . , x
nj

j )M

is independent (up to an isomorphism) of the choice of the almost p-
standard system of parameters and of the exponents ni+2, . . . , nj > 1.
This module is denoted by U ijM .

(b) Suppose j > i + 1. There is an injective homomorphism ϕ : U i,j−1
M →

U ijM such that Im(ϕ) is a direct summand of U ijM . We denote Coker(ϕ)

by U
ij

M . So there is a direct sum decomposition

U ijM ' U
ij

M ⊕ U
i,j−1

M ⊕ · · · ⊕ U i,i+2

M ⊕ U i,i+1
M .

We denote U
i,i+1

M := U i,i+1
M .

The subquotients U ijM and U
ij

M are new invariants of M . Moreover, we have

dimU
ij

M ≤ dimU ijM ≤ dimU idM ≤ dimM/(x2
i+1, . . . , x

2
d)M = i,

where x1, . . . , xd is an almost p-standard system of parameters of M . It is
clear that M is Cohen-Macaulay if and only if U ijM = 0 for all i < j, if and
only if U

ij

M = 0 for all i < j. Therefore they are obstructions for M to be
Cohen-Macaulay. These obstructions are simpler in the case of generalized
Cohen-Macaulay modules.

Recall that a finitely generated module M is a generalized Cohen-Macaulay
module if the local cohomology module Hi

m(M) is of finite length for i =
0, 1, . . . ,dim(M) − 1. On a generalized Cohen-Macaulay module, the almost
p-standard systems of parameters are exactly the standard system of param-
eters in the sense of [17]. The Cohen-Macaulay obstructions U ijM and U

ij

M of
generalized Cohen-Macaulay modules are simply computed in terms of local
cohomology as follows.

Lemma 2.4. Let M be a generalized Cohen-Macaulay module with dim(M) =
d > 0. Then

U ijM ' U
0,j−i
M '

j−i−1⊕
t=0

Ht
m(M)⊕(j−i−1

t ),

and

U
ij

M ' U
0,j−i
M '

j−i−1⊕
t=1

Ht
m(M)⊕(j−i−2

t−1 )
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for all 0 ≤ i < j ≤ d.

Proof. The second conclusion on decomposition of U
ij

M is a consequence of the
first conclusion.

On a generalized Cohen-Macaulay module, almost p-standard systems of
parameters are the same as standard systems of parameters in the sense of [17].
In particular, any permutation of an almost p-standard system of parameters
is also an almost p-standard system of parameters. Hence U ijM ' U

0,j−i
M . So it

suffices to prove that

U0,j
M '

j−1⊕
t=0

Ht
m(M)⊕(j−1

t )

for j > 0. Let x1, . . . , xd be a standard system of parameters of M . In par-
ticular, x1, . . . , xd is a d-sequence. If j = 1, then U0,1

M = 0 :M x2
1 = 0 :M

(x1, . . . , xd) = H0
m(M). Let j > 1 and denote N = M/x5

jM . By induction on
j, we have

U0,j
M ' U0,j−1

N '
j−2⊕
t=0

Ht
m(N)⊕(j−2

t ).

Now using the splitting property of local cohomology in [3, Corollary 2.8], we
have

Ht
m(N) ' Ht

m(M)⊕Ht+1
m (M/0 :M x5

j )

' Ht
m(M)⊕Ht+1

m (M/H0
m(M))

' Ht
m(M)⊕Ht+1

m (M).

Therefore,

U0,j
M '

j−1⊕
t=0

Ht
m(M)⊕(j−1

t ).
�

In order to obtain numerical Cohen-Macaulay obstructions, we use the multi-
plicity of the subquotients U ijM or U

ij

M . Firstly, for a finitely generated module
N and an integer i ≥ dim(N), we denote e(N)i = e(N) if dimN = i and
e(N)i = 0 if dimN < i. A consequence of Proposition 2.3 asserts that the
multiplicity e(U ijM )i and e(U

ij

M )i are numerical invariants of M .

Proposition 2.5. Let M be a finitely generated R-module of dimension d > 0.
The following statements are equivalent:

(a) M is Cohen-Macaulay;

(b) e(U ijM )i = 0 for all 0 ≤ i < j ≤ d;

(c) e(U
ij

M )i = 0 for all 0 ≤ i < j ≤ d;
(d) e(U idM )i = 0 for all 0 ≤ i < d.

Proof. The implications (a)⇒(b)⇒(c) are obvious while (c)⇒(d) and (d)⇒(b)
are consequence of the direct sum decomposition in Proposition 2.3(b).
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We now show that (b) implies (a). Let x1, . . . , xd be an almost p-standard
system of parameters of M . Replace x1, . . . , xd by x2

1, . . . , x
2
d if necessary, we

assume that U ijM ' (xi+2, . . . , xj)M : xi+1/(xi+2, . . . , xj)M . The assumption
e(U ijM )i = 0 implies in particular that dim(U ijM ) < i for all 0 ≤ i < j ≤ d. Now
using Remark 2.2(a), we get

`(M/(x1, . . . , xd)M) = e(x1, . . . , xd;M) +

d−1∑
i=0

e(x1, . . . , xi;U
id
M )

= e(x1, . . . , xd;M),

where e(x1, . . . , xd;M) is the multiplicity of M with respect to x1, . . . , xd.
Therefore M is Cohen-Macaulay (see, for example, [14, Theorem 17.11]). �

Now we use the second half of this section and the next section to construct
an infinite family of cohomological degrees as being announced. The numerical
Cohen-Macaulay obstructions in Proposition 2.5 will play a central role in our
construction.

As the first step of the construction, we note that a cohomological degree sat-
isfies the Bertini’s rule, namely, it does not increase when passing to a generic
hyperplane section. This leads to a notion of genericity for a cohomological
degree Deg, that is, an open subset of m/m2 consisting of hyperplanes h such
that Deg(M) ≥ Deg(M/hM) (see [21, Definition 1.5.1]). In the next proposi-
tion, we define for each R-module an open subset of the k-vector space m/m2

which will help to determines a notion of genericity for the expected family of
cohomological degrees.

Proposition 2.6. Let M be a finitely generated R-module of dimension d > 0.
We denote by HM the set of all elements h ∈ m \m2 such that ht, x2, . . . , xd is
an almost p-standard system of parameters of M for some x2, . . . , xd ∈ m and
some t > 0. The set (HM + m2)/m2 is a non-empty open subset in m/m2 with
respect to the Zariski topology.

Proof. First we show that (HM + m2)/m2 is non-empty. Take any p-standard
system of parameters x1, . . . , xd of M , that is, xi ∈ a(M/(xi+1, . . . , xd)M) for
i = d, d − 1, . . . , 2, 1. Since the module M/(x2, . . . , xd)M has dimension one,
we can choose generically h ∈ m \ m2 such that h is a parameter element of
M/(x2, . . . , xd)M . Clearly ht ∈ a(M/(x2, . . . , xd)M) for some t > 0, as the
latter ideal is m-primary. Thus ht, x2, . . . , xd is an almost p-standard system
of parameters of M (see Remark 2.2(d)). So h ∈ HM and therefore HM is not
empty.

For the openness, take a hyperplane section h ∈ HM . Then there are some
t > 0 and some x2, . . . , xd ∈ m such that ht, x2, . . . , xd is an almost p-standard
system of parameters of M . Using Remark 2.2(d) and the notations there, we
may assume that ht, x2, . . . , xd is a p-standard system of parameters, that is,
xi ∈ a(M/(xi+1, . . . , xd)M), i = 2, . . . , d and ht ∈ a(M/(x2, . . . , xd)M).
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Now let p1, . . . , pr be all minimal associated prime ideals of

M/(x2, . . . , xd)M.

Set
U := {g ∈ m \m2 : g 6∈ ∪ri=1pi}.

Then h ∈ U and U ⊆ HM . Indeed, for each element g ∈ U ,

gs ∈ a(M/(x2, . . . , xd)M)

for some s > 0. This shows that gs, x2, . . . , xd is a p-standard system of param-
eters of M and is particularly almost p-standard (see Remark 2.2(d) again).
Hence g ∈ HM and consequently U ⊆ HM . Therefore (U + m2)/m2 is an open
neighborhood of h̄ in (HM + m2)/m2. �

Lemma 2.7. Let M be a finitely generated R-module of dimension d > 0 and
let h ∈ HM be a hyperplane as in Proposition 2.6. There are x2, . . . , xd ∈ m
such that ht, x2, . . . , xd is an almost p-standard system of parameters of M for
some t > 0 and x2, . . . , xd is an almost p-standard system of parameters of
M/hM .

Proof. We will prove a stronger statement: Let h ∈ HM and x2, . . . , xd ∈ m
such that ht, x2, . . . , xd is an almost p-standard system of parameters of M for
some t > 0. Then x2, . . . , xd is an almost p-standard system of parameters of
M/hM .

Replace ht, x2, . . . , xd by h2t, x2
2, . . . , x

2
d if it is necessary, we assume that

U idM ' (0 : x
ni+1

i+1 )
M/(x

ni+2
i+2 ,...,x

nd
d )M

,

U0d
M ' (0 : ht)M/(x

n2
2 ,...,x

nd
d )M ,

for all i > 0 and n2, . . . , nd > 0. In particular,

(0 : h)M/(x
n2
2 ,...,x

nd
d )M = (0 : h)H0

m(M/(x
n2
2 ,...,x

nd
d )M) ' (0 : h)U0d

M
.

Denote N = M/hM . Combining the above isomorphisms with Auslander-
Buchsbaum’s formula relating length and multiplicity [1, Corollary 4.3], for any
n2, . . . , nd > 0, we have

`(N/(xn2
2 , . . . , xnd

d )N)

= `(M/(h, xn2
2 , . . . , xnd

d )M)

= e(h, xn2
2 , . . . , xnd

d ;M) + e(h, xn2
2 , . . . , x

nd−1

d−1 ; 0 :M xnd

d ) + · · ·
+ e(h, xn2

2 ; (0 : xn3
3 )M/(x

n4
4 ,...,x

nd
d )M ) + e(h; (0 : xn2

2 )M/(x
n3
3 ,...,x

nd
d )M )

+ `((0 : h)M/(x
n2
2 ,...,x

nd
d )M )

= n2 · · ·nde(h, x2, . . . , xd;M) + n2 · · ·nd−1e(h, x2, . . . , xd−1;Ud−1,d
M ) + · · ·

+ n2e(h, x2;U2d
M ) + e(h;U1d

M ) + `((0 : h)U0d
M

).

So x2, . . . , xd is an almost p-standard system of parameters of N = M/hM by
definition. �
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Now comes a technical property on the Bertini’s rule for the modules U
ij

M ’s.

Proposition 2.8. Let M be a finitely generated R-module of dimension d > 0
and h ∈ HM be a hyperplane section. For 1 ≤ i < j ≤ d, there are exact
sequences

0→ U ijM/hU
ij
M → U i−1,j−1

M/hM → L→ 0,

0→ U
ij

M/hU
ij

M → U
i−1,j−1

M/hM → N → 0,

where L and N are modules of finite length such that there is an isomorphism

(0 : h)Ui−1,j
M

' L⊕ (0 : h)Uij
M
,

and

`(N) =

{
`((0 : h)

U
i−1,j
M

)− `((0 : h)
U

ij
M

) if j > i+ 1,

`((0 : h)
U

i−1,i+1
M

) if j = i+ 1.

Proof. By Lemma 2.7, there are x2, . . . , xd ∈ m such that ht, x2, . . . , xd is an
almost p-standard system of parameters of M for some t > 0 and x2, . . . , xd
is an almost p-standard system of parameters of M/hM . Replacing x2, . . . , xd
by x2

2, . . . , x
2
d if necessary, we assume that

U ijM = (0 : xi+1)M/(xi+2,...,xj)M and U ijM/hM = (0 : xi+2)M/(h,xi+3,...,xj+1)M .

At the first step, we prove the conclusion for j = i+ 1 by showing an exact
sequence

0→ U i,i+1
M /hU i,i+1

M → U i−1,i
M/hM → (0 : h)

U
i−1,i+1
M

→ 0.

We have U
i,i+1

M = U i,i+1
M = 0 :M xi+1 and U

i−1,i

M/hM = U i−1,i
M/hM ' (0 : xi+1)M/hM .

By Remark 2.2(b), the system of parameters ht, x2, . . . , xd is a d-sequence on
M and thus 0 :M h ⊆ 0 :M ht ⊆ 0 :M xi+1. Then from the commutative
diagram

0 // M/0 :M h
∗h //

∗xi+1

��

M //

∗xi+1

��

M/hM //

∗xi+1

��

0

0 // M/0 :M h
∗h // M // M/hM // 0

we get an exact sequence

0 −→ 0 :M xi+1/0 :M h
∗h−→ 0 :M xi+1 −→ (0 : xi+1)M/hM

−→M/(xi+1M + 0 :M h)
ψ−→M/xi+1M.

It gives rise to an exact sequence

0→ (0 :M xi+1)/h(0 :M xi+1)→ (0 : xi+1)M/hM → Ker(ψ)→ 0.
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Let L = Ker(ψ). We have

L = xi+1M :M h/(xi+1M + 0 :M h)

'
(
(0 : h)M/xi+1M

)
/ ((xi+1M + 0 :M h)/xi+1M)

=
(

(0 : h)Ui−1,i+1
M

)/(
(xi+1M + (0 : h)Ui−1,i

M
)/xi+1M

)
.

The last equality is due to the fact that 0 :M h ⊆ 0 :M xi = U i−1,i
M , in

particular, 0 :M h = (0 : h)Ui−1,i
M

and

(0 : h)M/xi+1M = (0 : h)Ui−1,i
M/xi+1M

= (0 : h)Ui−1,i+1
M

.

On the other hand, by Proposition 2.3(b), there is a direct sum decomposition

U i−1,i+1
M ' U i−1,i

M ⊕ U i−1,i+1

M .

Hence
(0 : h)Ui−1,i+1

M
' (0 : h)Ui−1,i

M
⊕ (0 : h)

U
i−1,i+1
M

.

Through this isomorphism one have (xi+1M + (0 : h)Ui−1,i
M

)/xi+1M ' (0 :

h)Ui−1,i
M

. Furthermore, since ht, x2, . . . , xd is a d-sequence on M , there are
inclusions

0 :M h ⊆ 0 :M (ht, x2, . . . , xd) ⊆ H0
m(M) ⊆ 0 :M xi ⊆ 0 :M xi+1.

In particular, 0 :M h = (0 : h)Ui−1,i
M

= (0 : h)Ui,i+1
M

which induces an isomor-
phism

(0 : h)Ui−1,i+1
M

' (0 : h)Ui,i+1
M

⊕ (0 : h)
U

i−1,i+1
M

.

Denote L := Ker(ψ) ' (0 : h)
U

i−1,i+1
M

and it completes the proof for the case
j = i+ 1.

Now let j > i + 1. Applying the first part of the proof to the almost
p-standard system of parameters ht, x2, . . . , xi+1, xj+1, . . . , xd of the module
P = M/(xi+2, . . . , xj)M (see Remark 2.2(c)), we obtain an exact sequence

0→ U i,i+1
P /hU i,i+1

P → U i−1,i
P/hP → (0 : h)

U
i−1,i+1
P

→ 0,

where the last module satisfies

(0 : h)Ui−1,i+1
P

' (0 : h)Ui,i+1
P

⊕ (0 : h)
U

i−1,i+1
P

.

Note that U i,i+1
P ' U ijM , U i−1,i

P/hP ' U i−1,j−1
M/hM and U i−1,i+1

P ' U i−1,j
M . Denote

L = (0 : h)
U

i−1,i+1
P

, then

(0 : h)Ui−1,j
M

' (0 : h)
U

i−1,i+1
P

⊕ (0 : h)Uij
M

= L⊕ (0 : h)Uij
M
.

We obtain the conclusion on the first exact sequence.
For the second exact sequence, following Proposition 2.3(b) we have an iso-

morphism
U ijM ' U

ij

M ⊕ U
i,j−1
M ,
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which leads to an isomorphism of quotients

U ijM/hU
ij
M ' (U

ij

M/hU
ij

M )⊕ (U i,j−1
M /hU i,j−1

M ).

Then there is a commutative diagram

0

��

0

��

0

��
0 // U i,j−1

M /hU i,j−1
M

ϕ //

��

U i−1,j−2
M/hM

//

��

(0 : h)Ui−1,j−1
M

/
(0 : h)Ui,j−1

M

//

��

0

0 // U ijM/hU
ij
M

ψ //

��

U i−1,j−1
M/hM

//

��

(0 : h)Ui−1,j
M

/
(0 : h)Uij

M

//

��

0

0 // U
ij

M/hU
ij

M

��

ψ // U
i−1,j−1

M/hM

��

// N

��

// 0

0 0 0

where the rows and the columns are exact, ϕ,ψ are the canonical projections
and ψ is induced from ψ (see also [4, Lemma 3.4(a)]). Therefore,

`(N) = `
(

(0 : h)Ui−1,j
M

/
(0 : h)Uij

M

)
− `

(
(0 : h)Ui−1,j−1

M

/
(0 : h)Ui,j−1

M

)
= `((0 : h)

U
i−1,j
M

)− `((0 : h)
U

ij
M

).

The proof is complete. �

3. A family of cohomological degrees

The first example of a cohomological degree is the homological degree hdeg
given by Vasconcelos [18]. The second example of a cohomological degree is the
extremal degree bdeg given by Gunston [13]. It is simply defined for a module
M by

bdeg(M) = inf{Deg(M) : all cohomological degrees Deg}.
Recently N. T. Cuong-P. H. Quy introduced a notion of unmixed degree udeg
and showed that it is also a cohomological degree (see [11, Theorem 5.18]). The
unmixed degree is defined in terms of the subquotients U idM as

udeg(M) := e(M) +

d−1∑
i=0

e(U idM )i.

In this section we will construct an infinite family of cohomological degrees on
ModR.

A cohomological degree can be actually defined case by case. For examples,
let M be a finitely generated R-module such that 0 < depth(M) < dimM =
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dimR. We define a map Deg : ModR → R by letting Deg(N) = bdeg(N) for
any N 6= M and assigning Deg(M) to any number bigger than bdeg(M). So
Deg 6= bdeg and Deg is a cohomological degree. By this way we can construct
many cohomological degrees from bdeg. However, these functions are not really
what we expect as they are not given by “formula”.

Using the Cohen-Macaulay obstruction defined in Proposition 2.3 we con-
struct a family of cohomological degrees.

Theorem 3.1. Let R be a quotient of a Cohen-Macaulay local ring with dim(R)
= n > 0. Let Λ = {λijk ∈ R : 0 ≤ i < j ≤ k ≤ n} be a set of real numbers such
that

λ01k = 1 for 1 ≤ k ≤ n,
λ0jk ≤ λ0,j+1,k+1 and λijk ≤ λi+1,j+1,k+1 for 0 ≤ i < j ≤ k < n.

Define a function DegΛ : ModR → R by assigning a finitely generated R-module
M of dimension d to the number

DegΛ(M) := e(M) +
∑

0≤i<j≤d

λijde
(
U
ij

M

)
i
.

Then DegΛ is a cohomological degree.

Proof. LetM be a finitely generated R-module of dimension d > 0. We denote
M = M/H0

m(M).
We first show that DegΛ(M) = DegΛ(M) + `(H0

m(M)). Let x1, . . . , xd be
an almost p-standard system of parameters of the direct sum M ⊕ M . By
[4, Proposition 2.10], it is an almost p-standard system of parameters of M
and of M . Replace it by x2

1, . . . , x
2
d if necessary, we assume that

U ijM ' (0 : xi+1)M/(xi+2,...,xj)M , U ij
M
' (0 : xi+1)M/(xi+2,...,xj)M

for all 0 ≤ i < j ≤ d. Now, since x1, . . . , xd is a d-sequence on M (see Remark
2.2(b)),H0

m(M) = 0 :M x1 andH0
m(M)∩(xi+2, . . . , xj)M = 0 for 0 ≤ i < j ≤ d.

We then have a short exact sequence

(1) 0→ H0
m(M)→M/(xi+2, . . . , xj)M →M/(xi+2, . . . , xj)M → 0.

Suppose i > 0. Applying the functor HomR(R/(xi+1),−) to the exact se-
quence (1) and notice that HomR(R/(xi+1), H0

m(M)) ' H0
m(M) and

U ijM ' (0 : xi+1)M/(xi+2,...,xj)M ' HomR(R/(xi+1),M/(xi+2, . . . , xj)M),

U ij
M
' (0 : xi+1)M/(xi+2,...,xj)M ' HomR(R/(xi+1),M/(xi+2, . . . , xj)M),

we get an exact sequence for Ext modules, namely,

0→ H0
m(M)→ U ijM → U ij

M
→ Ext1

R(R/(xi+1), H0
m(M)).

Since H0
m(M) and Ext1

R(R/(xi+1), H0
m(M)) are of finite length, we obtain

e(U ijM )i = e(U ij
M

)i.
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From the direct sum decompositions U ijM ' U i,j−1
M ⊕ U ijM and U ij

M
' U i,j−1

M
⊕

U
ij

M , we get

(2) e(U
ij

M )i = e(U
ij

M )i.

For i = 0, it is worth mentioning that x1, xj+1, . . . , xd is an almost p-
standard system of parameters of M/(xi+2, . . . , xj)M (see Remark 2.2(c)), so
it is a d-sequence on M/(xi+2, . . . , xj)M and we have

U0,j
M ' (0 : x1)M/(x2,...,xj)M ' H0

m(M/(x2, . . . , xj)M),

U0,j

M
' (0 : x1)M/(x2,...,xj)M ' H

0
m(M/(x2, . . . , xj)M).

Now applying the functor Γm(−) to the short exact sequence (1), we get an
exact sequence

0→ H0
m(M)→ U0,j

M → U0,j

M
→ 0.

Hence `(U0,j
M ) = `(U0,j

M
) + `(H0

m(M)). Consequently,

(3) `(U
0,j

M ) = `(U
0,j

M ),

for j > 1 and

(4) `(U
0,1

M ) = `(U
0,1

M ) + `(H0
m(M)).

Combining the equalities (2), (3), (4), we obtain DegΛ(M) = DegΛ(M) +
`(H0

m(M)).
The calibration rule follows from Proposition 2.5 and the definition of DegΛ.

If M is Cohen-Macaulay, then U
ij

M = 0 for all 0 ≤ i < j ≤ d, so DegΛ(M) =
e(M).

Now we prove the Bertini’s rule. Suppose depth(M) > 0. Let h ∈ HM be a
hyperplane as being defined in Proposition 2.6. Using Proposition 2.8, we have

e
(
U
ij

M/hM

)
i

= e
(
U
i+1,j+1

M /hU
i+1,j+1

M

)
i

= e
(
U
i+1,j+1

M

)
i+1

for 0 < i < j < d, and for 0 = i < j < d,

`(U
0,j

M/hM ) = `(U
1,j+1

M /hU
1,j+1

M ) + `((0 : h)
U

0,j+1
M

)− `((0 : h)
U

1,j+1
M

)

= e(h;U
1,j+1

M ) + `((0 : h)
U

0,j+1
M

).

If we choose h generically, then e(h;U
1,j+1

M ) = e(U
1,j+1

M )1, which induces

`(U
0,j

M/hM ) = e(U
1,j+1

M )1 + `((0 : h)
U

0,j+1
M

) ≤ e(U1,j+1

M )1 + `(U
0,j+1

M ).

Combining these inequalities with the assumption λ0jk ≤ λ0j+1,k+1 and λijk ≤
λi+1,j+1,k+1 for 0 ≤ i < j ≤ k < n, we obtain

DegΛ(M/hM) = e(M/hM) +
∑

0≤i<j≤d−1

λi,j,d−1e
(
U
ij

M/hM

)
i
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≤ e(M) +
∑

0<i<j≤d

λi−1,j−1,d−1e
(
U
ij

M

)
i
+

d∑
j=2

λ0j−1,d−1`(U
0,j

M )

≤ e(M) +
∑

0<i<j≤d

λijde
(
U
ij

M

)
i
+

d∑
j=2

λ0jd`(U
0,j

M )

= DegΛ(M). �

Remark 3.2. From the assumption on the number λijk in Theorem 3.1, we have

λijk ≥ λ0,j−i,k−i ≥ λ0,1,k−j+1 = 1.

So all coefficients λijk’s of DegΛ are at least 1.

Theorem 3.1 applies to give rise to many cohomological degrees by assigning
concrete values to the coefficients λijk’s.

Example 3.3. (a) Given real numbers 1 = λ0 ≤ λ1 ≤ · · · ≤ λn. Let λijk = λi
for 0 ≤ i < j ≤ k ≤ n and Λ := {λijk : 0 ≤ i < j ≤ k ≤ n}. By Theorem 3.1,
we get a cohomological degree

DegΛ(M) = e(M) +
∑

0≤i<j≤d

λijde
(
U
ij

M

)
i

= e(M) + λd−1e(U
d−1,d
M )d−1 + · · ·+ λ1e(U

1d
M )1 + `(U0d

M ),

whereM is a finitely generated R-module of dimension d and the second equal-
ity follows from Proposition 2.3(b). In particular, if λ0 = · · · = λn = 1, then
one gets the unmixed degree udeg.

(b) Let λijk =
(
k−1
i

)
for any integers 0 ≤ i < j ≤ k. Then λ0jk = 1 and

λijk ≤ λi+1,j+1,k+1 for all 0 ≤ i < j ≤ k. By Theorem 3.1, the following
function is a cohomological degree

Degb(M) := e(M) +
∑

0≤i<j≤d

(
d− 1

i

)
e(U

ij

M )i,

where d = dim(M).

Let D(R) be the family of cohomological degrees constructed in Theorem
3.1. This is a convex set and we can compute its dimension as follows.

Corollary 3.4. Let R be a quotient of a Cohen-Macaulay local ring with
dim(R) = n > 0. The set D(R) is a convex set in a real vector space and
satisfies

dim(D(R)) =

(
n+ 2

3

)
− n.

Proof. The convexity is obvious.
For the dimension, we notice that in the construction of the family, the

coefficients λijk, 0 ≤ i < j ≤ k ≤ n, are only required to satisfy the relations
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λ01k = 1, λ0jk ≤ λ0,j+1,k+1 and λijk ≤ λi+1,j+1,k+1. At each dimension k, we
have

(
k+1

2

)
− 1 free parameters. Therefore

dim(D(R)) =

n∑
k=1

(

(
k + 1

2

)
− 1) =

(
n+ 2

3

)
− n.

�

In the family of cohomological degrees constructed in Theorem 3.1, the un-
mixed degree udeg is the lowest member (see Remark 3.2 and Example 3.3(a)).
It is particularly interesting to know how the homological degree hdeg relates
to this family. We discuss this question in the last part of this section. We
will show that in some special cases the homological degree coincides with the
degree Degb obtained in Example 3.3(b). Recall that

Degb(M) := e(M) +
∑

0≤i<j≤dimM

(
dim(M)− 1

i

)
e(U

ij

M )i.

From now on, R is a quotient of a Gorenstein local ring S of the same
dimension dim(R) = dim(S). Let M be a finitely generated R-module. For
simplicity, we may assume that dim(M) = d = dim(R). The i-th module of
deficiency of M is

Ki
M := Extd−iS (M,S)

for i = 0, 1, . . . , d. The top module Kd
M is the canonical module of M . Then

we have

hdeg(M) = e(M) +

d−1∑
i=0

(
d− 1

i

)
hdeg(Ki

M ).

Recall that a finitely generated R-moduleM is a generalized Cohen-Macaulay if
Hi

m(M) is of finite length for any i = 0, 1, . . . ,dim(M)−1. An interesting exten-
sion of Cohen-Macaulayness and generalized Cohen-Macaulayness for modules
with associated prime ideals of different heights are the notions of sequentially
Cohen-Macaulay modules due to Stanley and Schenzel and sequentially gener-
alized Cohen-Macaulay modules due to N. T. Cuong-L. T. Nhan. In order to
give the definition of these modules, it is worth mentioning that any finitely
generated R-module M has the so-called dimension filtration

D0 = H0
m(M) ⊂ D1 ⊂ · · · ⊂ Dt = M,

where Di is the unique maximal submodule of smaller dimension of Di+1 for
i = t − 1, . . . , 0. In particular, dim(M) = dim(Dt) > dim(Dt−1) > · · · >
dim(D1) > dim(D0). Actually, if di := dim(Di), then Di = Udi,di+1

M (see
[7, Lemma 3.5]). The module M is sequentially (generalized) Cohen-Macaulay
if Di+1/Di is (generalized) Cohen-Macaulay for i = 0, 1, . . ., t − 1. Sequen-
tial Cohen-Macaulayness has an interesting characterization by means of the
Cohen-Macaulayness of the modules of deficiency due to Stanley [16] and Schen-
zel [15]. Namely, M is sequentially Cohen-Macaulay if and only if Ki

M is either
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Cohen-Macaulay of dimension i or zero for i = 0, 1, . . . ,dim(M)− 1. An ana-
logue for sequentially generalized Cohen-Macaulay modules is obtained by N.
T. Cuong-L. T. Nhan [10, Theorem 5.3]. They showed that M is sequentially
generalized Cohen-Macaulay if and only if Ki

M is either generalized Cohen-
Macaulay of dimension i or of finite length for i = 0, 1, . . . ,dim(M)− 1.

In the next, we compute the homological degree and the value of Degb for
sequentially generalized Cohen-Macaulay modules and compare them in some
special cases. To ease the presentation, we stipulate that the zero module has
dimension −1 and

(
a
b

)
= 0 if either a < b or b < 0 for integers a, b.

Proposition 3.5. Let M be a finitely generated R-module of dimension d.
(a) If M is a generalized Cohen-Macaulay module, then

hdeg(M) = Degb(M) = udeg(M) = e(M) + I(M),

where

I(M) =

d−1∑
i=0

(
d− 1

i

)
`(Hi

m(M)),

is the Buchsbaum invariant.
(b) More generally, suppose that M is a sequentially generalized Cohen-

Macaulay module with the dimension filtration

D0 = H0
m(M) ⊂ D1 ⊂ · · · ⊂ Dt = M.

Denote d0 = 0, dj = dim(Dj) for j = 1, 2, . . . , t − 1, and set ∆ :=
{d0, d1, . . . , dt−1}. Then

hdeg(M) = e(M) +

t−1∑
j=0

(
d− 1

dj

)
(e(Dj) + I(K

dj
M )) +

∑
i 6∈∆

(
d− 1

i

)
`(Ki

M ),

Degb(M) = e(M) +

t−1∑
j=0

(
d− 1

dj

)
e(Dj) + γ,

where

γ =

t−1∑
i=0

di+1−1∑
j=0

((di+1 − 1

j

)
−
(
di − 1

j

))
`(Hj

m(M/Di)).

Proof. (a) Following Vasconcelos [18, Remark 2.10], we have

hdeg(M) = e(M) + I(M),

where

I(M) =

d−1∑
i=0

(
d− 1

i

)
`(Hi

m(M)).

We will show that Degb(M) = e(M) + I(M).
We have by Proposition 2.3(b),

U idM ' U
id

M ⊕ U
i,d−1

M ⊕ · · · ⊕ U i,i+2

M ⊕ U i,i+1
M ,
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which is of finite length asM is generalized Cohen-Macaulay. Hence e(U
ij

M )i =
0 if i > 0 and we obtain by Lemma 2.4,

Degb(M) = e(M) +
∑

0<j≤d

`(U
0,j

M ) = e(M) + `(U0,d
M ) = e(M) + I(M).

(b) Let M be a sequentially generalized Cohen-Macaulay module. Due to
[10, Theorem 5.3], the module of deficiency Ki

M , 0 ≤ i < d, is generalized
Cohen-Macaulay of dimension i when i ∈ ∆ and is of finite length when i 6∈ ∆.
Suppose i = dj = dim(Dj) for some j > 0. From the short exact sequence

0→ Dj →M →M/Dj → 0,

we get an exact sequence

0→ Ki
M/Dj

→ Ki
M → Ki

Dj
→ Ki−1

M/Dj
.

Note that Ki
M/Dj

,Ki−1
M/Dj

are of finite length (see [8, Proposition 3.5]) and Ki
Dj

is the canonical module of Dj . So e(Ki
M ) = e(Ki

Dj
) = e(Dj). In this case, due

to (a), we have hdeg(Ki
M ) = e(Ki

M )+I(Ki
M ) = e(Dj)+I(Ki

M ). If i 6∈ ∆, then
Ki
M is of finite length and thus hdeg(Ki

M ) = `(Ki
M ). This implies that

hdeg(M) =e(M) +

d−1∑
i=0

(
d− 1

i

)
hdeg(Ki

M )

=e(M) +

t−1∑
j=0

(
d− 1

dj

)
(e(Dj) + I(K

dj
M )) +

∑
i 6∈∆

(
d− 1

i

)
`(Ki

M ).

For Degb(M), we first recall the direct sum decomposition in Proposition
2.3(b),

U ijM ' U
ij

M ⊕ U
i,j−1

M ⊕ · · · ⊕ U i,i+2

M ⊕ U i,i+1
M .

Following [7, Lemma 3.5], Ds = U i,i+1
M for any integer i such that ds ≤ i < ds+1.

So by [4, Proposition 3.9(2)], U
ij

M⊕U
i,j−1

M ⊕· · ·⊕U i,i+2

M is of finite length. Hence

e(U
ij

M )i =


0 if i > 0, j ≥ i+ 2,

0 if j = i+ 1, i 6= d0, . . . , dt,

e(Ds) if j = i+ 1, i = ds.

This shows in particular that

Degb(M) = e(M) +

t−1∑
j=1

(
d− 1

dj

)
e(Dj) +

d∑
j=1

`(U
0,j

M )

= e(M) +

t−1∑
j=1

(
d− 1

dj

)
e(Dj) + `(U0d

M ).
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Now we choose an almost p-standard system of parameters x1, . . . , xd of M
such that U0d

M = (0 : x1)M/(x2,...,xd)M . We have

`(M/(xn1
1 , . . . , xnd

d )M) = n1 . . . nde(x1, . . . , xd;M)

+

d−1∑
i=1

n1 · · ·nie(x1, . . . , xi; (0 : xi+1)M/(xi+2,...,xd)M )

+ `(U0d
M )

for all n1, . . . , nd > 0 (see Remark 2.2(a)). On the other hand, by [8, Theorem
4.3] we have

`(M/(xn1
1 , . . . , xnd

d )M) =

t∑
j=0

n1 · · ·ndje(x1, . . . , xdj ;Dj) + γ,

also for all n1, . . . , nd > 0. Hence `(U0d
M ) = γ + `(H0

m(M)). Therefore,

Degb(M) = e(M) +

t−1∑
j=0

(
d− 1

dj

)
e(Dj) + γ.

�

Corollary 3.6. Let M be a finitely generated R-module. We have

hdeg(M) = Degb(M),

in the following cases:
(a) M is a sequentially Cohen-Macaulay module;
(b) M is a generalized Cohen-Macaulay module;
(c) (see also [11, Corollary 5.10]) dim(M) = 2.

Proof. Without lost of generality, we assume that

dim(M) = dim(R) = dim(S) = d > 0.

(a) SupposeM is a sequentially Cohen-Macaulay module. ThenKi
M is either

Cohen-Macaulay of dimension i or zero (see [15] or [16]). Using Proposition
3.5(b), we get that

hdeg(M) = e(M) +

t−1∑
j=0

(
d− 1

dj

)
e(Dj),

(see also [20, Example 1.5.23]) and

Degb(M) = e(M) +

t−1∑
j=0

(
d− 1

dj

)
e(Dj) + γ,

where

γ =

t−1∑
i=0

di+1−1∑
j=0

((di+1 − 1

j

)
−
(
di − 1

j

))
`(Hj

m(M/Di)) = 0.
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So hdeg(M) = Degb(M).
(b) This is proved in Proposition 3.5(a).
(c) Suppose dim(M) = 2. Following [8, Proposition 3.2], the module M

is either a generalized Cohen-Macaulay module or a sequentially generalized
Cohen-Macaulay module with the dimension filtration

D0 = H0
m(M) ⊂ D1 ⊂ D2 = M,

where dim(D1) = 1. The first case follows from (b). We consider the second
case. By Proposition 3.5(b), we have

hdeg(M) = e(M) + e(D1) + `(D0) + I(K1
M ),

Degb(M) = e(M) + e(D1) + `(D0) + `(H1
m(M/D1)).

Hence it suffices to show that `(H1
m(M/D1)) = I(K1

M ) = `(H0
m(K1

M )).
Without lost of generality we assume that dim(R) = dim(S) = 2. We have

an exact sequence 0→ D1 →M →M/D1 → 0 where dim(D1) = 1 and M/D1

is a generalized Cohen-Macaulay module of dimension 2 and positive depth
(see [8, Proposition 3.2]). It derives a long exact sequence

· · · → ExtiS(M/D1, S)→ ExtiS(M,S)→ ExtiS(D1, S)→ · · ·

in which HomS(D1, S) = 0 and Ext2
S(M/D1, S) ' K0

M/D1
= 0. It gives rise to

an exact sequence
0→ K1

M/D1
→ K1

M → K1
D1
→ 0.

Since M/D1 is generalized Cohen-Macaulay of dimension 2, K1
M/D1

is of finite
length. Furthermore, since K1

D1
is the canonical module of D1, it is Cohen-

Macaulay of dimension 1. Hence K1
M/D1

' H0
m(K1

M ) from the above short
exact sequence. Therefore,

`(H0
m(K1

M )) = `(K1
M/D1

) = `(H1
m(M/D1)),

by duality. �

In [20, Question 1.5.63(2)], Vasconcelos asked the following question.

Question 3.7. Let R be a Cohen-Macaulay local ring of dimension d. Denote
by N the set of all rational numbers

hdeg(M)− hdeg(M/hM)

e(M)
,

where M 6= 0 runs over the category of finitely generated R-modules and h is
any generic hyperplane section with respect to M . Is N finite or bounded?

As an application of Proposition 3.5 and Corollary 3.6, we give an example
showing that the answer to Vasconcelos’ question is negative.
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Example 3.8. Let R = k[[X,Y ]] be the ring of formal power series with
coefficients in a field k. Let m = (X,Y ) and Lt = mt+1 for t ≥ 0. The short
exact sequence

0→ Lt → R→ R/mt+1 → 0

deduces that Lt is a generalized Cohen-Macaulay module with H0
m(Lt) = 0 and

H1
m(Lt) ' R/mt+1. Following Proposition 3.5(a),

hdeg(Lt) = e(Lt) + `(R/mt+1) = 1 +

(
t+ 2

2

)
.

On the other hand, we may change the variables so that h = X is a generic
hyperplane of Lt. As dim(Lt/hLt) = 1, we have

hdeg(Lt/hLt) = e(Lt) + `(H0
m(Lt/XLt)).

From the two exact sequences

0→ Lt → R→ R/mt+1 → 0,

0→ R
∗X−→ R→ R/(X)→ 0,

we get the exact sequences

0→ TorR1 (R/(X), R/mt+1)→ Lt/XLt → R/XR→ R/(X,Y t+1)→ 0,

0→ TorR1 (R/(X), R/mt+1)→ R/mt+1 ∗X−→ R/mt+1 → R/(X,Y t+1)→ 0.

The first sequence induces an isomorphism

TorR1 (R/(X), R/mt+1) ' H0
m(Lt/XLt)

while the second gives rise to isomorphisms TorR1 (R/(X), R/mt+1) ' (0 :
X)R/mt+1 ' mt/mt+1. Hence

hdeg(Lt/hLt) = 1 + `(mt/mt+1) = t+ 2.

We obtain
hdeg(Lt)− hdeg(Lt/hLt)

e(Lt)
=

(
t+ 1

2

)
.

Therefore N ⊇ {
(
t+1

2

)
: for t ≥ 0} which is neither finite nor bounded.
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