DOI QR코드

DOI QR Code

A PARALLEL ITERATIVE METHOD FOR A FINITE FAMILY OF BREGMAN STRONGLY NONEXPANSIVE MAPPINGS IN REFLEXIVE BANACH SPACES

  • Kim, Jong Kyu (Department of Mathematics Education Kyungnam University) ;
  • Tuyen, Truong Minh (Department of Mathematics and Informatics Thainguyen University of Sciences)
  • Received : 2019.04.07
  • Accepted : 2019.11.26
  • Published : 2020.05.01

Abstract

In this paper, we introduce a parallel iterative method for finding a common fixed point of a finite family of Bregman strongly nonexpansive mappings in a real reflexive Banach space. Moreover, we give some applications of the main theorem for solving some related problems. Finally, some numerical examples are developed to illustrate the behavior of the new algorithms with respect to existing algorithms.

Keywords

References

  1. Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, in Theory and applications of nonlinear operators of accretive and monotone type, 15-50, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York, 1996.
  2. A. Ambrosetti and G. Prodi, A primer of nonlinear analysis, Cambridge Studies in Advanced Mathematics, 34, Cambridge University Press, Cambridge, 1993.
  3. H. H. Bauschke, J. M. Borwein, and P. L. Combettes, Bregman monotone optimization algorithms, SIAM J. Control Optim. 42 (2003), no. 2, 596-636. https://doi.org/10.1137/S0363012902407120
  4. H. H. Bauschke, J. M. Borwein, and P. L. Combettes, Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Commun. Contemp. Math. 3 (2001), no. 4, 615-647. https://doi.org/10.1142/S0219199701000524
  5. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123-145.
  6. J. F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems, Springer Series in Operations Research, Springer-Verlag, New York, 2000. https://doi.org/10.1007/978-1-4612-1394-9
  7. F. E. Browder, Existence and approximation of solutions of nonlinear variational inequalities, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 1080-1086. https://doi.org/10.1073/pnas.56.4.1080
  8. D. Butnariu and A. N. Iusem, Totally convex functions for fixed points computation and infinite dimensional optimization, Applied Optimization, 40, Kluwer Academic Publishers, Dordrecht, 2000. https://doi.org/10.1007/978-94-011-4066-9
  9. D. Butnariu and G. Kassay, A proximal-projection method for finding zeros of set-valued operators, SIAM J. Control Optim. 47 (2008), no. 4, 2096-2136. https://doi.org/10.1137/070682071
  10. D. Butnariu and E. Resmerita, Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal. 2006 (2006), Art. ID 84919, 39 pp. https://doi.org/10.1155/AAA/2006/84919
  11. L.-C. Ceng and J.-C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math. 214 (2008), no. 1, 186-201. https://doi.org/10.1016/j.cam.2007.02.022
  12. Y. Censor and A. Lent, An iterative row-action method for interval convex programming, J. Optim. Theory Appl. 34 (1981), no. 3, 321-353. https://doi.org/10.1007/BF00934676
  13. Y. Censor and S. Reich, Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization 37 (1996), no. 4, 323-339. https://doi.org/10.1080/02331939608844225
  14. C. E. Chidume, A. Adamu, and L. C. Okereke, A Krasnoselskii type algorithm for approximating solutions of variational inequality problems and convex feasibility problems, J. Nonlinear Var. Anal. 2 (2018), 203-218. https://doi.org/10.23952/jnva.2.2018.2.07
  15. I. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, Mathematics and its Applications, 62, Kluwer Academic Publishers Group, Dordrecht, 1990. https://doi.org/10.1007/978-94-009-2121-4
  16. V. Darvish, Strong convergence theorem for a system of generalized mixed equilibrium problems and finite family of Bregman nonexpansive mappings in Banach spaces, Opsearch 53 (2016), no. 3, 584-603. https://doi.org/10.1007/s12597-015-0245-2
  17. L. L. Duan, A. F. Shi, L. Wei, and R. P. Agarwal, Construction techniques of projection sets in hybrid methods for infinite weakly relatively nonexpansive mappings with applications, J. Nonlinear Funct. Anal. 2019 (2019), Article ID 14.
  18. G. Z. Eskandani, M. Raeisi, and J. K. Kim, A strong convergence theorem for Bregman quasi-noexpansive mappings with applications, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113 (2019), no. 2, 353-366. https://doi.org/10.1007/s13398-017-0481-9
  19. B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
  20. G. Kassay, S. Reich, and S. Sabach, Iterative methods for solving systems of variational inequalities in reflexive Banach spaces, SIAM J. Optim. 21 (2011), no. 4, 1319-1344. https://doi.org/10.1137/110820002
  21. J. K. Kim, Strong convergence theorems by hybrid projection methods for equilibrium problems and fixed point problems of the asymptotically quasi-$\phi$-nonexpansive mappings, Fixed Point Theory Appl. 2011 (2011), 10, 15 pp. https://doi.org/10.1186/1687-1812-2011-10
  22. J. K. Kim, Convergence theorems of iterative sequences for generalized equilibrium problems involving strictly pseudocontractive mappings in Hilbert spaces, J. Comput. Anal. Appl. 18 (2015), no. 3, 454-471.
  23. J. K. Kim and N. Buong, An iteration method for common solution of a system of equilibrium problems in Hilbert spaces, Fixed Point Theory Appl. 2011 (2011), Art. ID 780764, 15 pp. https://doi.org/10.1155/2011/780764
  24. J. K. Kim, N. Buong, and J. Y. Sim, A new iterative method for the set of solutions of equilibrium problems and of operator equations with inverse-strongly monotone mappings, Abstr. Appl. Anal. 2014 (2014), Art. ID 595673, 8 pp. https://doi.org/10.1155/2014/595673
  25. J. K. Kim and W. H. Lim, A new iterative algorithm of pseudomonotone mappings for equilibrium problems in Hilbert spaces, J. Inequal. Appl. 2013 (2013), 128, 16 pp. https://doi.org/10.1186/1029-242X-2013-128
  26. F. Kohsaka and W. Takahashi, Proximal point algorithms with Bregman functions in Banach spaces, J. Nonlinear Convex Anal. 6 (2005), no. 3, 505-523.
  27. P.-E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), no. 7-8, 899-912. https://doi.org/10.1007/s11228-008-0102-z
  28. V. Martin-Marquez, S. Reich, and S. Sabach, Bregman strongly nonexpansive operators in reflexive Banach spaces, J. Math. Anal. Appl. 400 (2013), no. 2, 597-614. https://doi.org/10.1016/j.jmaa.2012.11.059
  29. J.-J. Moreau, Sur la fonction polaire d'une fonction semi-continue superieurement, C. R. Acad. Sci. Paris 258 (1964), 1128-1130.
  30. E. Naraghirad and J.-C. Yao, Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl. 2013 (2013), 141, 43 pp. https://doi.org/10.1186/1687-1812-2013-141
  31. S. Reich, Review of Geometry of Banach spaces, duality mappings and nonlinear problems by Ioana Cioranescu, Bull. Amer. Math. Soc. 26 (1992), 367-370. https://doi.org/10.1090/S0273-0979-1992-00287-2
  32. S. Reich, A weak convergence theorem for the alternating method with Bregman distances, in Theory and applications of nonlinear operators of accretive and monotone type, 313-318, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York, 1996.
  33. S. Reich and S. Sabach, A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal. 10 (2009), no. 3, 471-485.
  34. S. Reich and S. Sabach, Two strong convergence theorems for a proximal method in re exive Banach spaces, Numer. Funct. Anal. Optim. 31 (2010), no. 1-3, 22-44. https://doi.org/10.1080/01630560903499852
  35. S. Reich and S. Sabach, Two strong convergence theorems for Bregman strongly nonexpansive operators in re exive Banach spaces, Nonlinear Anal. 73 (2010), no. 1, 122-135. https://doi.org/10.1016/j.na.2010.03.005
  36. S. Reich and S. Sabach, Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in re exive Banach spaces, in Fixed-point algorithms for inverse problems in science and engineering, 301-316, Springer Optim. Appl., 49, Springer, New York, 2011. https://doi.org/10.1007/978-1-4419-9569-8_15
  37. S. Reich, A projection method for solving nonlinear problems in reflexive Banach spaces, J. Fixed Point Theory Appl. 9 (2011), no. 1, 101-116. https://doi.org/10.1007/s11784-010-0037-5
  38. S. Reich, Three strong convergence theorems regarding iterative methods for solving equilibrium problems in re exive Banach spaces, in Optimization theory and related topics, 225-240, Contemp. Math., 568, Israel Math. Conf. Proc, Amer. Math. Soc., Providence, RI, 2012. https://doi.org/10.1090/conm/568/11285
  39. E. Resmerita, On total convexity, Bregman projections and stability in Banach spaces, J. Convex Anal. 11 (2004), no. 1, 1-16.
  40. R. T. Rockafellar, Level sets and continuity of conjugate convex functions, Trans. Amer. Math. Soc. 123 (1966), 46-63. https://doi.org/10.2307/1994612
  41. S. Suantai, Y. J. Cho, and P. Cholamjiak, Halpern's iteration for Bregman strongly nonexpansive mappings in re exive Banach spaces, Comput. Math. Appl. 64 (2012), no. 4, 489-499. https://doi.org/10.1016/j.camwa.2011.12.026
  42. W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), no. 2, 417-428. https://doi.org/10.1023/A:1025407607560
  43. T. M. Tuyen, Parallel iterative methods for Bregman strongly nonexpansive operators in reflexive Banach spaces, J. Fixed Point Theory Appl. 19 (2017), no. 3, 1695-1710. https://doi.org/10.1007/s11784-016-0325-9
  44. T. M. Tuyen, Parallel iterative methods for solving systems of generalized mixed equilibrium problems in re exive Banach spaces, Optimization 66 (2017), no. 4, 623-639. https://doi.org/10.1080/02331934.2016.1277999
  45. A. Y. Wang and Z. M. Wang, A simple hybrid Bregman projection algorithms for a family of countable Bregman quasi-strict pseudo-contractions, Nonlinear Funct. Anal. Appl. 22 (2017), no. 5, 1001-1011.
  46. H.-K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006), no. 2, 631-643. https://doi.org/10.1016/j.jmaa.2005.04.082
  47. C. Zalinescu, Convex analysis in general vector spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. https://doi.org/10.1142/9789812777096
  48. H. Zegeye, Convergence theorems for Bregman strongly nonexpansive mappings in reflexive Banach spaces, Filomat 28 (2014), no. 7, 1525-1536. https://doi.org/10.2298/FIL1407525Z
  49. J. Zhao and S. Wang, Strong convergence for Bregman relatively nonexpansive mapping in reflexive Banach spaces and applications, Nonlinear Funct. Anal. Appl. 20 (2015), no. 3, 365-379.