References
- Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, in Theory and applications of nonlinear operators of accretive and monotone type, 15-50, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York, 1996.
- A. Ambrosetti and G. Prodi, A primer of nonlinear analysis, Cambridge Studies in Advanced Mathematics, 34, Cambridge University Press, Cambridge, 1993.
- H. H. Bauschke, J. M. Borwein, and P. L. Combettes, Bregman monotone optimization algorithms, SIAM J. Control Optim. 42 (2003), no. 2, 596-636. https://doi.org/10.1137/S0363012902407120
- H. H. Bauschke, J. M. Borwein, and P. L. Combettes, Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Commun. Contemp. Math. 3 (2001), no. 4, 615-647. https://doi.org/10.1142/S0219199701000524
- E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123-145.
- J. F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems, Springer Series in Operations Research, Springer-Verlag, New York, 2000. https://doi.org/10.1007/978-1-4612-1394-9
- F. E. Browder, Existence and approximation of solutions of nonlinear variational inequalities, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 1080-1086. https://doi.org/10.1073/pnas.56.4.1080
- D. Butnariu and A. N. Iusem, Totally convex functions for fixed points computation and infinite dimensional optimization, Applied Optimization, 40, Kluwer Academic Publishers, Dordrecht, 2000. https://doi.org/10.1007/978-94-011-4066-9
- D. Butnariu and G. Kassay, A proximal-projection method for finding zeros of set-valued operators, SIAM J. Control Optim. 47 (2008), no. 4, 2096-2136. https://doi.org/10.1137/070682071
- D. Butnariu and E. Resmerita, Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal. 2006 (2006), Art. ID 84919, 39 pp. https://doi.org/10.1155/AAA/2006/84919
- L.-C. Ceng and J.-C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math. 214 (2008), no. 1, 186-201. https://doi.org/10.1016/j.cam.2007.02.022
- Y. Censor and A. Lent, An iterative row-action method for interval convex programming, J. Optim. Theory Appl. 34 (1981), no. 3, 321-353. https://doi.org/10.1007/BF00934676
- Y. Censor and S. Reich, Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization 37 (1996), no. 4, 323-339. https://doi.org/10.1080/02331939608844225
- C. E. Chidume, A. Adamu, and L. C. Okereke, A Krasnoselskii type algorithm for approximating solutions of variational inequality problems and convex feasibility problems, J. Nonlinear Var. Anal. 2 (2018), 203-218. https://doi.org/10.23952/jnva.2.2018.2.07
- I. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, Mathematics and its Applications, 62, Kluwer Academic Publishers Group, Dordrecht, 1990. https://doi.org/10.1007/978-94-009-2121-4
- V. Darvish, Strong convergence theorem for a system of generalized mixed equilibrium problems and finite family of Bregman nonexpansive mappings in Banach spaces, Opsearch 53 (2016), no. 3, 584-603. https://doi.org/10.1007/s12597-015-0245-2
- L. L. Duan, A. F. Shi, L. Wei, and R. P. Agarwal, Construction techniques of projection sets in hybrid methods for infinite weakly relatively nonexpansive mappings with applications, J. Nonlinear Funct. Anal. 2019 (2019), Article ID 14.
- G. Z. Eskandani, M. Raeisi, and J. K. Kim, A strong convergence theorem for Bregman quasi-noexpansive mappings with applications, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113 (2019), no. 2, 353-366. https://doi.org/10.1007/s13398-017-0481-9
- B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
- G. Kassay, S. Reich, and S. Sabach, Iterative methods for solving systems of variational inequalities in reflexive Banach spaces, SIAM J. Optim. 21 (2011), no. 4, 1319-1344. https://doi.org/10.1137/110820002
-
J. K. Kim, Strong convergence theorems by hybrid projection methods for equilibrium problems and fixed point problems of the asymptotically quasi-
$\phi$ -nonexpansive mappings, Fixed Point Theory Appl. 2011 (2011), 10, 15 pp. https://doi.org/10.1186/1687-1812-2011-10 - J. K. Kim, Convergence theorems of iterative sequences for generalized equilibrium problems involving strictly pseudocontractive mappings in Hilbert spaces, J. Comput. Anal. Appl. 18 (2015), no. 3, 454-471.
- J. K. Kim and N. Buong, An iteration method for common solution of a system of equilibrium problems in Hilbert spaces, Fixed Point Theory Appl. 2011 (2011), Art. ID 780764, 15 pp. https://doi.org/10.1155/2011/780764
- J. K. Kim, N. Buong, and J. Y. Sim, A new iterative method for the set of solutions of equilibrium problems and of operator equations with inverse-strongly monotone mappings, Abstr. Appl. Anal. 2014 (2014), Art. ID 595673, 8 pp. https://doi.org/10.1155/2014/595673
- J. K. Kim and W. H. Lim, A new iterative algorithm of pseudomonotone mappings for equilibrium problems in Hilbert spaces, J. Inequal. Appl. 2013 (2013), 128, 16 pp. https://doi.org/10.1186/1029-242X-2013-128
- F. Kohsaka and W. Takahashi, Proximal point algorithms with Bregman functions in Banach spaces, J. Nonlinear Convex Anal. 6 (2005), no. 3, 505-523.
- P.-E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), no. 7-8, 899-912. https://doi.org/10.1007/s11228-008-0102-z
- V. Martin-Marquez, S. Reich, and S. Sabach, Bregman strongly nonexpansive operators in reflexive Banach spaces, J. Math. Anal. Appl. 400 (2013), no. 2, 597-614. https://doi.org/10.1016/j.jmaa.2012.11.059
- J.-J. Moreau, Sur la fonction polaire d'une fonction semi-continue superieurement, C. R. Acad. Sci. Paris 258 (1964), 1128-1130.
- E. Naraghirad and J.-C. Yao, Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl. 2013 (2013), 141, 43 pp. https://doi.org/10.1186/1687-1812-2013-141
- S. Reich, Review of Geometry of Banach spaces, duality mappings and nonlinear problems by Ioana Cioranescu, Bull. Amer. Math. Soc. 26 (1992), 367-370. https://doi.org/10.1090/S0273-0979-1992-00287-2
- S. Reich, A weak convergence theorem for the alternating method with Bregman distances, in Theory and applications of nonlinear operators of accretive and monotone type, 313-318, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York, 1996.
- S. Reich and S. Sabach, A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal. 10 (2009), no. 3, 471-485.
- S. Reich and S. Sabach, Two strong convergence theorems for a proximal method in re exive Banach spaces, Numer. Funct. Anal. Optim. 31 (2010), no. 1-3, 22-44. https://doi.org/10.1080/01630560903499852
- S. Reich and S. Sabach, Two strong convergence theorems for Bregman strongly nonexpansive operators in re exive Banach spaces, Nonlinear Anal. 73 (2010), no. 1, 122-135. https://doi.org/10.1016/j.na.2010.03.005
- S. Reich and S. Sabach, Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in re exive Banach spaces, in Fixed-point algorithms for inverse problems in science and engineering, 301-316, Springer Optim. Appl., 49, Springer, New York, 2011. https://doi.org/10.1007/978-1-4419-9569-8_15
- S. Reich, A projection method for solving nonlinear problems in reflexive Banach spaces, J. Fixed Point Theory Appl. 9 (2011), no. 1, 101-116. https://doi.org/10.1007/s11784-010-0037-5
- S. Reich, Three strong convergence theorems regarding iterative methods for solving equilibrium problems in re exive Banach spaces, in Optimization theory and related topics, 225-240, Contemp. Math., 568, Israel Math. Conf. Proc, Amer. Math. Soc., Providence, RI, 2012. https://doi.org/10.1090/conm/568/11285
- E. Resmerita, On total convexity, Bregman projections and stability in Banach spaces, J. Convex Anal. 11 (2004), no. 1, 1-16.
- R. T. Rockafellar, Level sets and continuity of conjugate convex functions, Trans. Amer. Math. Soc. 123 (1966), 46-63. https://doi.org/10.2307/1994612
- S. Suantai, Y. J. Cho, and P. Cholamjiak, Halpern's iteration for Bregman strongly nonexpansive mappings in re exive Banach spaces, Comput. Math. Appl. 64 (2012), no. 4, 489-499. https://doi.org/10.1016/j.camwa.2011.12.026
- W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), no. 2, 417-428. https://doi.org/10.1023/A:1025407607560
- T. M. Tuyen, Parallel iterative methods for Bregman strongly nonexpansive operators in reflexive Banach spaces, J. Fixed Point Theory Appl. 19 (2017), no. 3, 1695-1710. https://doi.org/10.1007/s11784-016-0325-9
- T. M. Tuyen, Parallel iterative methods for solving systems of generalized mixed equilibrium problems in re exive Banach spaces, Optimization 66 (2017), no. 4, 623-639. https://doi.org/10.1080/02331934.2016.1277999
- A. Y. Wang and Z. M. Wang, A simple hybrid Bregman projection algorithms for a family of countable Bregman quasi-strict pseudo-contractions, Nonlinear Funct. Anal. Appl. 22 (2017), no. 5, 1001-1011.
- H.-K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006), no. 2, 631-643. https://doi.org/10.1016/j.jmaa.2005.04.082
- C. Zalinescu, Convex analysis in general vector spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. https://doi.org/10.1142/9789812777096
- H. Zegeye, Convergence theorems for Bregman strongly nonexpansive mappings in reflexive Banach spaces, Filomat 28 (2014), no. 7, 1525-1536. https://doi.org/10.2298/FIL1407525Z
- J. Zhao and S. Wang, Strong convergence for Bregman relatively nonexpansive mapping in reflexive Banach spaces and applications, Nonlinear Funct. Anal. Appl. 20 (2015), no. 3, 365-379.