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A PARALLEL ITERATIVE METHOD FOR A FINITE FAMILY

OF BREGMAN STRONGLY NONEXPANSIVE MAPPINGS

IN REFLEXIVE BANACH SPACES

Jong Kyu Kim and Truong Minh Tuyen

Abstract. In this paper, we introduce a parallel iterative method for
finding a common fixed point of a finite family of Bregman strongly non-

expansive mappings in a real reflexive Banach space. Moreover, we give

some applications of the main theorem for solving some related problems.
Finally, some numerical examples are developed to illustrate the behavior

of the new algorithms with respect to existing algorithms.

1. Introduction

Many kinds of problems in mathematics and physical sciences can be recast
in terms of the problem for finding a fixed point for Bregman strongly nonex-
pansive mappings in Banach spaces, for instance, convex feasibility problems,
null point problems for maximal monotone mappings, generalized mixed equi-
librium problems, variational inequality problems (see Section 4). Due to the
practical importance of these problems, iterative algorithms for finding fixed
points of Bregman strongly nonexpansive mapping continue to be flourishing
topic of interest in nonlinear analysis. Many authors have studied iterative
methods to find the fixed point of Bregman strongly nonexpansive mappings
and some related problems, see for instance, Chidume et.al. [14], Duan et.al.
[17], Eskandani et al. [18], Kassay [20], Reich et al. [35–38], Suantai et al. [41],
Tuyen [43,44], Wang et al. [45], Zegye [48].

Let X be a real reflexive Banach space, X∗ be the dual space of X, and
Ti : X → X, i = 1, 2, . . . , N, be Bregman strongly nonexpansive mappings
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which satisfy F (Ti) = F̂ (Ti) for all i ∈ {1, 2, . . . , N} and

F :=

N⋂
i=1

F (Ti) 6= ∅,

where F (Ti) (resp. F̂ (Ti)) is the set of fixed points (resp. asymptotic fixed
points) of Ti

Let f : X → R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of X.

In 2010, Reich et al. introduced two algorithms for finding an element in
F by using Bregman distance. They proved the strong convergence of the
following two algorithms in a real reflexive Banach space.

(1)



x0 ∈ X,
yin = Ti(xn + ein), i = 1, 2, . . . , N,

Cin = {z ∈ X : Df (z, yin) ≤ Df (z, xn + ein)},

Cn :=
N⋂
i=1

Cin,

Qn = {z ∈ X : 〈5f(x0)−5f(xn), z − xn〉 ≤ 0},
xn+1 = projfCn∩Qn

(x0), n ≥ 0,

and

(2)



x0 ∈ X,
Ci0 = X, i = 1, 2, . . . , N,

yin = Ti(xn + ein), i = 1, 2, . . . , N,

Cin+1 = {z ∈ Cin : Df (z, yin) ≤ Df (z, xn + ein)},

Cn+1 :=
N⋂
i=1

Cin+1,

xn+1 = projfCn+1
(x0), n ≥ 0,

where the sequences of errors {ein} ⊂ X satisfy ‖ein‖ → 0 for all i = 1, 2, . . . , N .
We can see that in the iterative methods (1) and (2), it is difficult to find

the element xn+1. Indeed, for each iteration step, in (1), we have to find the
Bregman projection of x0 onto the set of the intersection of N closed and convex
subsets of X. Particularly, in (4), we have to find the Bregman projection of
x0 on the set of the intersection of N(n+ 1) closed and convex subsets of X.

For N = 1, in 2012, by using Halpern’s iterative method, Suantai et al. [41]
gave the following iterative method: for fixed u ∈ X and starting point x1 ∈ X,

(3) xn+1 = 5f∗(αn 5 f(u) + (1− αn)5 f(Txn)),∀n ≥ 1,

to find a fixed point of a Bregman strongly nonexpansive mapping T on X,
where f∗ is a Fenchel conjugate function of f . They proved that if the sequence
{αn} ⊂ (0, 1) satisfying the following conditions:

(C1) limn→∞ αn = 0,



A PARALLEL ITERATIVE METHOD 619

(C2)
∑∞
n=1 αn =∞,

then the sequence {xn} defined by (3) converges strongly to projfF (u), where

F = F (T ) and projfF is the Bregman projection of u ∈ int dom f onto F .
In 2014, to find a common fixed point of a finite family of Bregman strongly

nonexpansive mappings T1, . . . , TN , Zegeye [48] introduced the following itera-
tive method

(4) xn+1 = projfC(5f∗(αn 5 f(u) + (1− αn)5 f(Txn))),

where T = TNTN−1 · · ·T1. He proved that if the sequence {αn} ⊂ (0, 1)
satisfying the conditions (C1) and (C2) and

F :=

N⋂
i=1

F (Ti) 6= ∅,

then the sequence {xn} generated by (4) converges strongly to projfF (u).
We can see that in the iterative method (4), to compute the element xn+1, we

have to compute T (xn) by T (xn) = TN (TN−1(· · · (T1(xn)))). For instance if Ti,
i = 1, 2, . . . , N is huge size matrix, then the computation process the element
T (xn) is not easy. So, there exists an open question is posed as follows:

Can we introduce a new parallel algorithm for finding a common fixed point
of a finite family of Bregman nonexpansive mappings without using the product
mapping, that is, we only have to compute Ti(xn) at each iteration step?

The purpose of this work is to give a new parallel iterative method for finding
a common fixed point of a finite family of Bregman strongly nonexpansive
mappings by using Bregman distance tool and the Halpern’s iteration [19] to
answer the above open question.

Furthermore, in Section 4, we give some applications of our main result to
solving convex feasibility problems, problem of finding a common zero of max-
imal monotone mappings, generalized mixed equilibrium problems, problem of
finding a common zero of Bregman inverse strongly monotone mappings and
variational inequality problems. Finally, in Section 5, we give two numerical
examples to illustrate the obtained results and show its performance.

2. Preliminaries

Let X be a real Banach space, X∗ be the dual space of X and C be a
nonempty, closed and convex subset of X. We denote the norm in X and
X∗ by ‖ · ‖ and ‖ · ‖∗, respectively, and we denote the value of the functional
x∗ ∈ X∗ at x ∈ X by 〈x∗, x〉.

Let f : X → (−∞,+∞] be a function. We denote the domain of f by
dom f , that is, dom f = {x ∈ X : f(x) < +∞}, and the interior of a set
K by int K. The function f is called lower semi-continuous at x0 ∈ dom f
if lim infx→x0

f(x) ≥ f(x0) and f is called lower semi-continuous if it is lower
semi-continuous at every point of its domain. For any x ∈ int dom f and y ∈ X,
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we defined by f ′(x, y) the right-hand derivative of f at x in the direction y,
that is,

f ′(x, y) = lim
t↓0

f(x+ ty)− f(x)

t
,

The function f is called Gâteaux differentiable at x if

lim
t→0

f(x+ ty)− f(x)

t

exists for any y. In this case f ′(x, y) coincides with (5f)(x), the value of the
gradient 5f of f at x. The function f is called Gâteaux differentiable if it is
Gâteaux differentiable for every x ∈ int domf .

The function f is said to be Fréchet differentiable at x if this limit is attained
uniformly in ‖y‖ = 1 and f is said to be uniformly Fréchet differentiable on a
subset E of X if this limit is attained uniformly for x ∈ E and ‖y‖ = 1. It is
known that if f is Gâteaux differentiable (resp. Fréchet differentiable) on int
domf , then f is continuous and its Gâteaux derivative 5f is norm-to-weak*
continuous (resp. continuous) on int domf (see [6]).

Let f : X → (−∞,+∞] be a proper, lower semi-continuous and convex
function. For x ∈ int domf , the subdifferential of f at x is defined by

∂f(x) = {x∗ ∈ X∗ : f(x) + 〈x∗, y − x〉 ≤ f(y), ∀y ∈ X},
and the Fenchel conjugate of f is the function f∗ : X∗ → (−∞,+∞] defined
by

f∗(x∗) = sup
x∈X
{〈x∗, x〉 − f(x)}.

Let X be a reflexive Banach space. Then a function f : X → (−∞,+∞] is
called Legendre if it satisfies the following two conditions:

(L1) The interior of the domain of f is nonempty, f is Gâteaux differentiable
on int domf , and dom5f = int domf ;

(L2) The interior of the domain of f∗ is nonempty, f∗ is Gâteaux differen-
tiable on int domf∗, and dom5f∗ = int domf∗.

Since X is reflexive, we know that (∂f)−1 = ∂f∗ (see [6]). This, with (L1) and
(L2), imply the following equalities:

5f = (5f∗)−1, ran5 f = dom5f∗ = int dom f∗

and

ran5 f∗ = dom5f = int dom f,

where ran 5f denotes the range of 5f .
When the subdifferential of f is single-valued, it coincides with the gradient,

that is, ∂f = 5f (see [10]). By Bauschke et al. (see [4]) the conditions (L1) and
(L2) also imply that the function f and f∗ are strictly convex on the interior
of their respective domains. If X is a smooth and strictly convex Banach space
(see [15,31]), then the Legendre function is f(x) = 1

p‖x‖
p, 1 < p < +∞.

From now on we assume that X is a reflexive Banach space.



A PARALLEL ITERATIVE METHOD 621

Let f : X → (−∞,+∞] be a convex and Gâteaux differentiable function.
The function Df : domf × int domf → [0,+∞), defined by

(5) Df (y, x) = f(y)− f(x)− 〈5f(x), y − x〉,

is called the Bregman distance with respect to f (see [12]). The Bregman
distance has the following two important properties, called the three point
identity: for any x ∈ dom f and any y, z ∈ int dom f ,

(6) Df (x, y) +Df (y, z)−Df(x, z) = 〈5f(z)−5f(y), x− y〉,

and the four point identity: for any y, ω ∈ dom f and any x, z ∈ int dom f ,

(7) Df (y, x)−Df (y, z)−Df(ω, x) +Df (ω, z) = 〈5f(z)−5f(x), y − ω〉.

Let f : X → (−∞,+∞] be a convex and Gâteaux differentiable function.
The Bregman projection of x ∈ int domf onto the nonempty, closed and convex

subset C ⊂ domf is the necessary unique vector projfC(x) ∈ C satisfying

Df (projfC(x), x) = inf{Df (y, x) : y ∈ C}.

The normalized duality mapping J : X → 2X
∗

of X is defined by

Jx := {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2}

for every x ∈ X.
It is known that X is strictly convex and reflective, then the duality mapping

J of X is one-to-one and onto, and J−1 : X∗ → 2X is the duality mapping of
X∗.

If X is a smooth and strictly convex Banach space and f(x) = ‖x‖2 for all
x ∈ X, then 5f(x) = 2Jx for all x ∈ X, where J is the normalized duality
mapping from X into 2X

∗
, and hence Df (x, y) is reduced to

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2,

for all x, y ∈ X, which is a Lyapunov function introduced by Alber in [1]

and the Bregman projection projfC(x) is reduced to the generalized projection
ΠC(x) which is defined by

φ(ΠC(x), x) = min
y∈C

φ(y, x).

If X = H is a Hilbert space, then J is the identity mapping and hence

Bregman projection projfC(x) is reduced to the metric projection of H onto C.
Let f : X → (−∞,+∞] be a convex and Gâteaux differentiable function.

Then f is called:

(a) totally convex at x ∈ int domf if its modulus of total convexity at x,
that is, the function vf : int dom f × [0,+∞)→ [0,+∞) defined by

vf (x, t) := inf{Df (y, x) : y ∈ dom f, ‖y − x‖ = t},

is positive, whenever t > 0;
(b) totally convex if it is totally convex at every point x ∈ int domf ;
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(c) totally convex on bounded sets if vf (B, t) is positive for any nonempty
bounded subset B of X and t > 0, where the modulus of total convexity
of the function f on the set B is the bi-function vf : int dom f ×
[0,+∞)→ [0,+∞), defined by

vf (B, t) := inf{vf (x, t) : x ∈ B ∩ int dom f}.
A function f : X → (−∞,+∞] is called:

(a) cofinite if dom f∗ = X∗;
(b) coercive (see [48]) if the sublevel set of f is bounded which is equivalent

to lim‖x‖→+∞ f(x) =∞, where the sublevel of f is defined by

levf≤(r) := {x ∈ X : f(x) ≤ r}
for some r ∈ R;

(c) strongly coercive if lim‖x‖→∞
f(x)
‖x‖ =∞.

Let f : X → R be a convex, Legendre and Gâteaux differentiable function.
Following [1] and [12], we make use of the function Vf : X × X∗ → [0,∞)
associated with f , which is defined by

Vf (x, x∗) := f(x)− 〈x∗, x〉+ f∗(x∗), ∀x ∈ X,x∗ ∈ X∗.
Then Vf is nonexpansive and Vf (x, x∗) = Df (x,5f∗(x∗)) for all x ∈ X and
x∗ ∈ X∗. Moreover, by the subdifferential inequality,

(8) Vf (x, x∗) + 〈y∗,5f∗(x∗)− x〉 ≤ Vf (x, x∗ + y∗)

for all x ∈ X and x∗, y∗ ∈ X∗ [26]. In addition, if f : X → (−∞,+∞] is a
proper lower semicontinuous function, then f∗ : X∗ → (−∞,+∞] is a proper
weak∗ lower semicontinuous and convex function (see [28]). Hence, Vf is convex
in the second variable. Thus, for all z ∈ X, from 5f = (5f∗)−1, we have

Df

(
z,5f∗

(
N∑
i=1

ti 5 f(xi)

))
= Vf (z,

N∑
i=1

ti 5 f(xi))

≤
N∑
i=1

tiVf (z,5f(xi))

=

N∑
i=1

tiDf (z,5f∗ 5 f(xi))

=

N∑
i=1

tiDf (z, xi),(9)

where {xi}Ni=1 ⊂ X and {ti}Ni=1 ⊂ (0, 1) with
∑N
i=1 ti = 1.

Let C be a convex subset of int domf and let T be a self-mapping of C. A
point p in the closure of C is said to be an asymptotic fixed point of T (see
[13], [32]) if C contains a sequence {xn} which converges weakly to p such that
the strong limn→∞ ‖xn − Txn‖ = 0. The set of asymptotic fixed points of T
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will be denoted by F̂ (T ). A point p ∈ C is called a strong asymptotic fixed
point of T if there exists a sequence {xn} in C which converges strongly to p
and limn→∞ ‖xn− Txn‖ = 0. We denote the set of all strong asymptotic fixed

points of T by F̃ (T ).
Recall that the mapping T is said to be Bregman quasi-nonexpansive [35] if

F (T ) 6= ∅ and

Df (p, Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F (T ).

A mapping T : C → C is said to be Bregman relatively nonexpansive [35] if
the following conditions are satisfied:

i) F (T ) is nonempty;
ii) Df (p, Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F (T );

iii) F̂ (T ) = F (T ).

In 2013, E. Naraghirad and J. C. Yao [30] introduced a new class of Bregman
quasi-nonexpansive type mappings. A mapping T : C → C is said to be
Bregman weak relatively nonexpansive if the following conditions are satisfied:

i) F (T ) is nonempty;
ii) Df (p, Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F (T );

iii) F̃ (T ) = F (T ).

Remark 2.1.

a) It is easy to see that any Bregman relatively nonexpansive mapping
is a Bregman-quasi nonexpansive mapping. It is also obvious that
every Bregman relatively nonexpansive mapping is a Bregman weak
relatively nonexpansive mapping, but the converse is not true in general
[30, Example 1.1].

b) If X is a smooth and strictly convex Banach space and f(x) = ‖x‖2 for
all x ∈ X, then the notations Bregman quasi-nonexpansive mapping,
Bregman relatively nonexpansive mapping, Bregman relatively nonex-
pansive mapping and Bregman weak relatively nonexpansive mapping
are called quasi nonexpansive mapping, relatively nonexpansive map-
ping, relatively nonexpansive mapping and weak relatively nonexpan-
sive mapping, respectively.

A mapping T : C → C is called (quasi-)Bregman strongly nonexpansive

(BSNE for short, see [28]) with respect to a nonempty F̂ (T ) if

(10) Df (p, Tx) ≤ Df (p, x)

for all p ∈ F̂ (T ) and x ∈ C. If {xn} ⊂ C is bounded, p ∈ F̂ (T ), and

(11) lim
n→∞

(Df (p, xn)−Df (p, Txn)) = 0,

then we have

(12) lim
n→∞

Df (Txn, xn) = 0.
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A mapping T : C → C is called Bregman firmly nonexpansive (BFNE for
short) if

(13) 〈5f(Tx)−5f(Ty), Tx− Ty〉 ≤ 〈5f(x)−5f(y), Tx− Ty〉
for all x, y ∈ C. It is clear that from the definition of Bregman distance (5)
that inequality (13) is equivalent to

(14)
Df (Tx, Ty) +Df (Ty, Tx) +Df (Tx, x) +Df (Ty, y)

≤ Df (Tx, y) +Df (Ty, x).

In [36] (see Lemma 1.3.2), Reich et al. proved that for any BFNE mapping T ,

F (T ) = F̂ (T ) when the Legendre function f is uniformly Fréchet differentiable
and bounded on bounded subsets of X. In the case that, if T is a BFNE
mapping, then T is a BSNE mapping with respect to a nonempty F (T ) = F̂ (T ).

The following lemmas will be needed in the sequel for the proof of main
results in this paper.

Lemma 2.2 ([2, Theorem 1.8]). If f : X → R is uniformly Fréchet differen-
tiable, then f is uniformly continuous on X.

Lemma 2.3 ([33, Proposition 2.1]). If f : X → R is uniformly Fréchet dif-
ferentiable and bounded on a bounded subset of X, then 5f is uniformly con-
tinuous on a bounded subset of X from the strong topology of X to the strong
topology of X∗.

Lemma 2.4 ([39, Proposition 2.2]). If x ∈ int domf , then the following state-
ments are equivalent:

(i) The function f is totally convex at x;
(ii) For any sequence {yn} ⊂ domf,

lim
n→∞

Df (yn, x) = 0,

implies that limn→∞ ‖yn − x‖ = 0.

Recall that the function f is called sequentially consistent (see [10]) if for any
two sequences {xn} and {yn} in int domf and domf , respectively, such that
the first one is bounded and limn→∞Df (yn, xn) = 0 implies that limn→∞ ‖yn−
xn‖ = 0.

Lemma 2.5 ([8, Lemma 2.1.2]). The function f is totally convex on a bounded
set if and only if it is sequentially consistent.

Lemma 2.6 ([10, Corollary 4.4]). Suppose that f is Gâteaux differentiable and
totally convex on the dom f . Let x ∈ int dom f and let C ⊂ int dom f be a
nonempty, closed and convex subset. If x ∈ C, then the following conditions
are equivalent:

(i) x = projfC(x);
(ii) x is the unique solution of variational inequality

〈5f(x)−5f(y), z − y〉 ≥ 0 ∀y ∈ C;
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(iii) x is the unique solution of inequality

Df (y, z) +Df (z, x) ≤ Df (y, x) ∀y ∈ C.
Lemma 2.7 ([34, Lemma 3.1]). Let f : X −→ R be a Gâteaux differen-
tiable and totally convex function. If x0 ∈ X and the sequence {Df (xn, x0)} is
bounded, then the sequence {xn} is bounded too.

Lemma 2.8 ([27]). Let {sn} be a real sequence which does not decrease at
infinity in the sense that there exists a subsequence {snk

} such that

snk
≤ snk+1 ∀k ≥ 0.

Define an integer sequence {τ(n)}, where n > n0, by

τ(n) := max{n0 ≤ k ≤ n : sk < sk+1}.
Then τ(n)→∞ as n→∞ and for all n > n0, we have

max{sτ(n), sn} ≤ sτ(n)+1.

Lemma 2.9 ([46]). Let {sn} be a sequence of nonnegative numbers, {αn} be
a sequence in (0, 1) and let {cn} be a sequence of real numbers satisfying the
following two conditions:

(i) sn+1 ≤ (1− αn)sn + αncn;
(ii)

∑∞
n=0 αn = +∞, lim supn→∞ cn ≤ 0.

Then limn→∞ sn = 0.

3. Main results

Let X be a real reflexive Banach space. Let Ti : X −→ X be Breg-
man strongly nonexpansive mappings which satisfy F (Ti) = F̂ (Ti) for all
i ∈ {1, 2, . . . , N} and

F =

N⋂
i=1

F (Ti) 6= ∅.

Let f : X −→ R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on a bounded subset of X.

We consider the following problem:

Find an element x∗ ∈ F.(15)

In order to solve Problem (15), we propose the following algorithm:

Algorithm 3.1. For an initial guess x0 = x ∈ X and u ∈ X, define the
sequence {xn} by

yi,n = Ti(xn), i = 1, 2, . . . , N,

chosse in such that

Df (yin,n, xn) = maxi=1,2,...,N{Df (yi,n, xn)}, and let yn = yin,n,

xn+1 = 5f∗(αn 5 f(u) + (1− αn)5 f(yn)), n ≥ 0,

where {αn} ⊂ (0, 1).
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Now, we will prove the strong convergence of the above sequence {xn} under
the following conditions:

(C1) limn→∞ αn = 0;
(C2)

∑∞
n=0 αn =∞.

First, we have the following propositions.

Proposition 3.2. In Algorithm 3.1, we have that the sequence {xn} is bounded.

Proof. Let p ∈ F , from (9), we have

Df (p, xn+1) = Df (p,5f∗(αn 5 f(u) + (1− αn)5 f(yn)))

≤ αnDf (p, u) + (1− αn)Df (p, yn).(16)

From the definition of Ti and yn, we get that

Df (p, yn) = Df (p, Tin(xn))

= Df (Tin(p), Tin(xn))

≤ Df (p, xn).(17)

From (16) and (17), we obtain that

Df (p, xn+1) ≤ αnDf (p, u) + (1− αn)Df (p, xn)

≤ max{Df (p, u), Df (p, xn)}
...

≤ max{Df (p, u), Df (p, x0)}.

This implies that {Df (p, xn)} is bounded. It follows from Lemma 2.7 that the
sequence {xn} is bounded. �

Proposition 3.3. Let {xn} be a sequence generated by Algorithm 3.1. Then
for all p ∈ F , we have the following estimate

sn+1 ≤ (1− αn)sn + αncn,(18)

where sn = Df (p, xn) and cn = 〈5f(u)−5f(p), xn+1 − p〉.

Proof. For any p ∈ F , from (8), we have

Df (p, xn+1) = Vf (p, αn 5 f(u) + (1− αn)5 f(yn))

≤ Vf (p, αn 5 f(u) + (1− αn)5 f(yn)− αn(5f(u)−5f(p)))

+ αn〈5f(u)−5f(p), xn+1 − p〉
= Vf (p, αn 5 f(p) + (1− αn)5 f(yn))

+ αn〈5f(u)−5f(p), xn+1 − p〉
≤ αnVf (p,5f(p)) + (1− αn)Vf (p,5f(yn))

+ αn〈5f(u)−5f(p), xn+1 − p〉
= (1− αn)Df (p, yn) + αn〈5f(u)−5f(p), xn+1 − p〉.(19)
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Thus, combining (17) and (19), we obtain that

sn+1 ≤ (1− αn)sn + αncn.

This completes the proof. �

Now, strong convergence of the sequence {xn} in Algorithm 3.1 is given by
the following theorem.

Theorem 3.4. Let X be a real reflexive Banach space. Let Ti : X −→ X be
Bregman strongly nonexpansive mappings which satisfy F (Ti) = F̂ (Ti) for all
i ∈ {1, 2, . . . , N} and

F =

N⋂
i=1

F (Ti) 6= ∅.

Let f : X −→ R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on a bounded subset of X.
If the conditions (C1) and (C2) are satisfied, then the sequence {xn} generated

by Algorithm 3.1, converges strongly to x∗ = projfF (u) as n→∞.

Proof. Let x∗ = projfF (u) and {sn} be the sequence generated in Proposition
3.3 with p = x∗. We will show that sn → 0 by considering two possible cases.

Case 1. The sequence {sn} is eventually decreasing, i.e., there exists N0 ≥ 0
such that {sn} is decreasing for n ≥ N0 and thus {sn} must be convergent.
This implies that

lim
n→∞

(Df (x∗, xn+1)−Df (x∗, xn)) = lim
n→∞

(sn+1 − sn)

= 0.(20)

Now, we use the proof line as in [36]. From (17) and the boundedness of
{xn}, there is M > 0 such that

f(x∗)− 〈5f(yn), x∗〉+ f∗(5f(yn)) = Vf (x∗,5f(yn))

= Df (x∗, yn)

≤M.

Hence, {5f(yn)} is contained in the set levψ≤(M−f(x∗)), where ψ = f∗−〈·, x∗〉.
Since f is lower semicontinuous, f∗ is weak* lower semicontinuous. Hence, the
function ψ is coercive by Moreau-Rockafellar Theorem (see [40, Theorem 7A]
and [29]). This implies that {5f(yn)} is bounded. Thus, from the condition
(C1), we get that

lim
n→∞

‖ 5 f(xn+1)−5f(yn)‖ = lim
n→∞

αn‖ 5 f(u)−5f(yn)‖

= 0.(21)

Since f is strongly coercive and uniformly convex on a bounded subset of X,
f∗ is uniformly Fréchet differentiable on a bounded subset of X∗ (see [47,
Proposition 3.6.2]). Moreover, f∗ is bounded on a bounded subset of X∗ (see



628 J. K. KIM AND T. M. TUYEN

[47, Lemma 3.6.1] and [4, Theorem 3.3]). It follows from Lemma 2.3 that 5f∗
is uniformly continuous on a bounded subset of X∗ and hence we get

lim
n→∞

‖xn+1 − yn‖ = lim
n→∞

‖ 5 f∗(5f(xn+1))−5f∗(5f(yn))‖

= 0.(22)

Thus, from Lemma 2.2, we obtain that

lim
n→∞

‖f(xn+1)− f(yn)‖ = 0.(23)

Now, we have

Df (x∗, yn)−Df (x∗, xn) = f(x∗)− f(yn)− 〈5f(yn), x∗ − yn〉 −Df (x∗, xn)

= f(x∗)− f(xn+1) + f(xn+1)− f(yn)

− 〈5f(xn+1), x∗ − xn+1〉+ 〈5f(xn+1), x∗ − xn+1〉
− 〈5f(yn), x∗ − yn〉 −Df (x∗, xn)

= Df (x∗, xn+1) + (f(xn+1)− f(yn))

+ 〈5f(xn+1), x∗ − xn+1〉(24)

− 〈5f(yn), x∗ − yn〉 −Df (x∗, xn)

= Df (x∗, xn+1) + (f(xn+1)− f(yn))

+ 〈5f(xn+1)−5f(yn), x∗ − xn+1〉
+ 〈5f(yn), yn − xn+1〉.

From (21)–(24), we obtain

lim
n→∞

(Df (x∗, yn)−Df (x∗, xn)) = lim
n→∞

(Df (x∗, Tin(xn))−Df (x∗, xn))(25)

= 0.

It follows from (10)-(12) that

lim
n→∞

Df (yn, xn) = lim
n→∞

Df (Tin(xn), xn) = 0.(26)

From the definition of yn, we have

lim
n→∞

Df (yi,n, xn) = lim
n→∞

Df (Ti(xn), xn) = 0(27)

for all i = 1, 2, . . . , N.
Since X is reflexive and {xn} is bounded, there exists a subsequence {xnk

}
of {xn} such that xnk

⇀ v and

lim sup
n→∞

〈5f(u)−5f(x∗), xn − x∗〉 = 〈5f(u)−5f(x∗), v − x∗〉.

On the other hand, from (27), limn→∞Df (Ti(xn), xn) = 0 for all i =
1, 2, . . . , N , we have v ∈ F . It follows from the definition of Bregman pro-
jection and Lemma 2.6 that

lim sup
n→∞

〈5f(u)−5f(x∗), xn − x∗〉 ≤ 0,
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that is, lim supn→∞ cn ≤ 0, where cn is in Proposition 3.3.
Applying Lemma 2.9 to (18), we get limn→∞ sn = 0, that is,

lim
n→∞

Df (x∗, xn) = 0.

It follows from Lemma 2.4 that xn → x∗.

Case 2. Suppose {sn} is not a monotone sequence. Then, from Lemma
2.8, we can define an integer sequence {τ(n)} for all n ≥ n0 (for some n0 large
enough) by

τ(n) = max{k ≤ n : sk < sk+1}.
Moreover, τ is a nondecreasing sequence such that τ(n) → ∞ as n → ∞ and
sτ(n) < sτ(n+1) for all n ≥ n0.

From (19), we have

0 < sτ(n)+1 − sτ(n) ≤ 2ατ(n)〈5f(u)−5f(p), xτ(n)+1 − p〉.

Since ατ(n) → 0 and the boundedness of {xn}, we derive

lim
n→∞

(sτ(n)+1 − sτ(n)) = 0.(28)

By a similar argument to Case 1, we can verify lim supn→∞ cτ(n) ≤ 0 and

sτ(n)+1 ≤ (1− ατ(n))sτn + ατ(n)cτ(n).

Since sτ(n)+1 > sτ(n) and ατ(n) > 0, we have

sτ(n) ≤ cτ(n).

Thus, from lim supn→∞ cτ(n) ≤ 0, we get limn→∞ sτ(n) = 0. This together with
(28) implies that limn→∞ sτ(n)+1 = 0. Now, we have

0 ≤ sn ≤ max{sτ(n), sn} ≤ sτ(n)+1 → 0.

Therefore, sn → 0, that is, {xn} converges strongly to x∗ = projfF (u). (see,
Case 1).
This completes the proof. �

We know that if X is a smooth, strictly convex and reflexive Banach space
and f(x) = ‖x‖2 (see, Section 2), then the notion of the Bregman strongly
nonexpansive mapping is reduced to the notion of the strongly relatively non-
expansive mapping. So, we have the following corollary for finding a common
fixed point of a finite family of strongly relatively nonexpansive mappings [49].

Corollary 3.5. Let X be a smooth, strictly convex and reflexive Banach space
and J be the normalized duality mapping from X to 2X

∗
. Let Ti be strongly

relatively nonexpansive mappings on X for all i ∈ {1, 2, . . . , N} and

F =

N⋂
i=1

F (Ti) 6= ∅.
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Suppose that u ∈ X and define the sequence {xn} as follows: x0 ∈ E and
yi,n = Ti(xn), i = 1, 2, . . . , N,

chosse in such that

φ(yin,n, xn) = maxi=1,2,...,N{φ(yi,n, xn)}, and let yn = yin,n,

xn+1 = J−1(αnJ(u) + (1− αn)J(yn)), n ≥ 0,

where {αn} ⊂ (0, 1). If the conditions (C1) and (C2) are satisfied, then the
sequence {xn} converges strongly to x∗ = ΠF (u) as n→∞.

4. Applications

4.1. Convex feasibility problems

Let Ci, i = 1, 2, . . . , N be N nonempty, closed and convex subsets of X such
that

C =

N⋂
i=1

Ci 6= ∅.

The convex feasibility problem (CFP) is to find an element in C. We know

that F (projfCi
) = Ci for all i ∈ {1, 2, . . . , N}. And if the Legendre function

f is uniformly Fréchet differentiable and bounded on a bounded subset of X,

then the Bregman projection projfCi
is BFNE and F (projfCi

) = F̂ (projfCi
) (see

[36]). Thus, if we take Ti = projfCi
in Theorem 3.4, then we get an algorithm

for solving the convex feasibility problems.

Theorem 4.1. Let Ci, i = 1, 2, . . . , N be nonempty, closed and convex subsets
of X such that

C =

N⋂
i=1

Ci 6= ∅.

Let f : X −→ R be a Legendre function which is bounded, uniformly Fréchet
differentiable and totally convex on a bounded subset of X. Then, for each

x0 ∈ X, the sequence {xn} defined by Algorithm 3.1 with Ti = projfCi
for all

i = 1, 2, . . . , N , converges strongly to projfC(u), as n→ +∞.

4.2. Common zeros of maximal monotone mappings

Let A : X −→ 2X
∗

be a maximal monotone mapping. The problem of
finding an element x ∈ X such that

0 ∈ Ax

is very important in optimization theory and related fields.

Recall that the resolvent of A, denoted by ResfA : X −→ 2X is defined as
follows (see [3]):

ResfA(x) = (5f +A)−1
◦ 5 f(x).
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Bauschke et al. [3] proved that this resolvent is a single-valued BFNE mapping.
In addition, if the Legendre function f is uniformly Fréchet differentiable and

bounded on a bounded subset of X, then the resolvent ResfA is a BSNE mapping

which satisfies F (ResfA) = F̂ (ResfA) (see [36]). And from F (ResfA) = A−10, in

Theorem 3.4, if we take Ti = ResfAi
for all i = 1, 2, . . . , N , we get an algorithm

for the problem of finding a common zero of a finite family of maximal monotone
mappings.

Theorem 4.2. Let Ai : X −→ 2X
∗
, i = 1, 2, . . . , N be N maximal monotone

mappings such that F = ∩Ni=1A
−1
i 0 6= ∅. Let f : X −→ R be a Legendre

function which is bounded, uniformly Fréchet differentiable and totally convex
on a bounded subset of X. Then, for each x0 ∈ X, the sequence {xn} defined

by Algorithm 3.1 with Ti = ResfAi
for all i = 1, 2, . . . , N , converges strongly to

projfF (u), as n→ +∞.

4.3. System of generalized mixed equilibrium problems

Let Θ : C × C −→ R be a bifunction, where R is the set of real numbers,
Ψ : X −→ X∗ be a nonlinear mapping and ϕ : C −→ R be a real valued
function. The generalized mixed equilibrium problem is to find an element
x ∈ C such that

(29) Θ(x, y) + 〈Ψx, y − x〉+ ϕ(y) ≥ ϕ(x) ∀y ∈ C.

The set of solutions of the problem (29) is denoted by GMEP (Θ, ϕ,Ψ), that
is

GMEP (Θ, ϕ,Ψ) = {x ∈ C : Θ(x, y) + 〈Ψx, y − x〉+ ϕ(y) ≥ ϕ(x) ∀y ∈ C}.

Let Φi, i = 1, 2, . . . , N be bifunctions from C×C to R, let ϕi, i = 1, 2, . . . , N
be real valued-functions from C to R and let Ψi, i = 1, 2, . . . , N be mappings
from X to X∗. Solving a system of generalized mixed equilibrium problems
means finding an element x ∈ C such that

x ∈
N⋂
i=1

GMEP (Θi, ϕi,Ψi).

In particular, if Ψ = 0, the problem (29) reduces to the mixed equilibrium
problem (see [11]) which is to find an element x ∈ C such that

(30) Θ(x, y) + ϕ(y) ≥ ϕ(x) ∀y ∈ C.

We denote by MEP (Θ) the set of solutions of the problem (30).
If ϕ = 0, the problem (29) reduces to the generalized equilibrium problem

(see [22,42]), which is to find an element x ∈ C such that

(31) Θ(x, y) + 〈Ψx, y − x〉 ≥ 0 ∀y ∈ C.

The set of solutions of the problem (31) is denoted by GEP (Θ,Ψ).
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If Θ = 0, the problem (29) reduces to the mixed variational inequality
problem of Browder type (see [7]), which is to find an element x ∈ C such that

(32) 〈Ψx, y − x〉+ ϕ(y) ≥ ϕ(x) ∀y ∈ C.

The set of solutions of the problem (32) is denoted by MV I(C,ϕ,Ψ).
If ϕ = 0 and Ψ = 0, the problem (29) reduces to the equilibrium problem

(see [5, 21,23–25]) which is to find an element x ∈ C such that

(33) Θ(x, y) ≥ 0 ∀y ∈ C.

The set of solutions of the problem (33) is denoted by EP (Θ).
For solving the generalized mixed equilibrium problem, let us assume that

the bifunction Θ : C × C −→ R satisfies the following conditions:

(C1) Θ(x, x) = 0 for all x ∈ C;
(C2) Θ is monotone, i.e., Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C;
(C3) for all x, y, z ∈ C,

lim sup
t↓0

Θ(tz + (1− t)x, y) ≤ Θ(x, y);

(C4) for each x ∈ C, Θ(x, .) is convex and lower semi-continuous.

Let C be a nonempty, closed and convex subset of a real reflexive Banach
space X and let ϕ be a lower semi-continuous and convex function from C to
R and Ψ : C −→ X∗ be a continuous monotone mapping. Let Θ : C×C −→ R
be a bifunctional satisfying the conditions (C1)-(C4). The mixed resolvent of

Θ is the mapping ResfΘ,ϕ,Ψ : X −→ 2C defined by

ResfΘ,ϕ,Ψ(x) = {z ∈ C : Θ(z, y) + ϕ(y) + 〈Ψx, y − z〉
+ 〈5f(z)−5f(x), y − z〉 ≥ ϕ(z) ∀y ∈ C}.

Note that, if f : X −→ (−∞,+∞] is a coercive and Gâteaux differentiable

function, then the mixed resolvent of Θ satisfies dom ResfΘ,ϕ,Ψ = X (see [16],

Lemma 4.14).

Lemma 4.3 (see [16], Lemma 2.15). Let f : X −→ (−∞,+∞] be a Legendre
function. Let C be a nonempty, closed and convex subset of X. If the bifunction
Θ : C × C −→ R satisfies conditions (C1)-(C4), then

(i) ResfΘ,ϕ,Ψ is single-valued;

(ii) ResfΘ,ϕ,Ψ is a BFNE mapping;

(iii) the set of fixed points of ResfΘ,ϕ,Ψ is the solution set of the corre-

sponding generalized mixed equilibrium problem, i.e., F (ResfΘ,ϕ,Ψ) =

GMEP (Θ, ϕ,Ψ);
(iv) GMEP (Θ, ϕ,Ψ) is a closed and convex subset of C;

(v) for all x ∈ X and u ∈ F (ResfΘ,ϕ,Ψ), we have

Df (u,ResfΘ,ϕ,Ψ(x)) +Df (ResfΘ,ϕ,Ψ(x), x) ≤ Df (u, x).
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Now, by using Lemma 4.3, we have the following theorem for solving the
system of generalized mixed equilibrium problems.

Theorem 4.4. Let Ci, i = 1, 2, . . . , N be nonempty, closed and convex subsets
of X. Let Θi : Ci×Ci −→ R satisfying conditions (C1)-(C4), let ϕi : Ci −→ R
be lower semi-continuous and convex functions from Ci to R and Ψi : Ci −→
X∗ be continuous monotone mappings, for all i = 1, 2, . . . , N . Assume that

S :=

N⋂
i=1

GMEP (Θi, ϕi,Ψi) 6= ∅.

Let f : X −→ R be a coercive Legendre function which is bounded, uniformly
Fréchet differentiable and totally convex on a bounded subset of X. Then, for

each x0 ∈ X, the sequence {xn} defined by Algorithm 3.1 with Ti = ResfΘi,ϕi,Ψi

for all i = 1, 2, . . . , N , converges strongly to projfS(u), as n→ +∞.

4.4. Common zeros of Bregman inverse strongly monotone mappings

The class of Bregman inverse strongly monotone mappings was introduced
by Butnariu and Kassay in [9]. We assume that the Legendre function f satisfies
the following range condition:

(34) ran (5f −A) ⊂ ran (5f).

Recall that an mapping A : X −→ 2X
∗

is called Bregman inverse strongly
monotone mapping (BISM for short) if (domA) ∩ (int domf) 6= ∅ and for any
x, y ∈ int domf , and if ξ ∈ Ax, η ∈ Ay, we have

〈ξ − η,5f∗(5f(x)− ξ)−5f∗(5f(y)− η)〉 ≥ 0.

Recall that the anti-resolvent of A is the mapping Af : X −→ 2X , defined by

Af = 5f∗o (5f −A).

We know that the mapping A is BISM if and only if the anti-resolvent Af

of it is a (single-valued) BFNE mapping (see [9], Lemma 3.5). Reich et al.
proved that if f : X −→ (−∞,+∞] is a Legendre function and A : X −→
2X

∗
is a BISM mapping such that A−1(0) 6= ∅, then A−1(0) = F (Af ) (see

[34], Proposition 7). Thus, if the Legendre function f is uniformly Fréchet
differentiable and totally convex on a bounded subset of X, the anti-resolvent
Af is a single-valued BSNE mapping which satisfies F (Af ) = F̂ (Af ) (see [36],
Lemma 1.3.2).

Now, let Ci, i = 1, 2, . . . , N be nonempty, closed and convex subsets of X and
let Ai : X −→ 2X

∗
, i = 1, 2, . . . , N be BISM mappings such that Ci ⊂ domAi

for all i ∈ {1, 2, . . . , N} and that f : X −→ R. From the range condition (34),

we obtain that domAfi = (domA) ∩ (int domf) = domAi because in this case
int domf = X. From Proposition 7 (i) in [36], we know that A−1(0) = F (Af ).
So, we have the following theorem:
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Theorem 4.5. Let Ci, i = 1, 2, . . . , N be nonempty, closed and convex subsets
of X such that

C :=

N⋂
i=1

Ci 6= ∅.

Let Ai : X −→ 2X
∗
, i = 1, 2, . . . , N be BISM mappings such that Ci ⊂ domAi

and

S :=

N⋂
i=1

A−1
i (0) 6= ∅.

Let f : X −→ R be a Legendre function which is bounded, uniformly Fréchet
differentiable and totally convex on a bounded subset of X. Suppose that the
range condition (30) is satisfied for each Ai. Then, for each x0 ∈ C, the

sequence {xn} defined by Algorithm 3.1 with Ti = Afi for all i = 1, 2, . . . , N ,

converges strongly to projfS(u) as n→ +∞.

4.5. System of variational inequalities

In this subsection, we consider the variational inequality problem: Find an
element x† ∈ C such that

(35) 〈Ax†, y − x†〉 ≥ 0 ∀y ∈ C,

where A : X −→ X∗ is a BISM mapping and C is a nonempty, closed and
convex subset of domA. We denote by V I(C,A) the set of solutions of (35).

We know that in [34] (see Proposition 8), Reich et al. proved that, if f :
X −→ (−∞,+∞] is a Legendre and totally convex function which satisfies
the range condition (34) and A : X −→ X∗ is a BISM mapping, and if C is
a nonempty, closed and convex subset of domA ∩ int domf , then V I(A,C) =

F (projfC oAf ).
Thus, if the Legendre function f is uniformly Fréchet differentiable and

totally convex on bounded subsets of X, the anti-resolvent Af is a single-valued
BSNE mapping which satisfies F (Af ) = F̂ (Af ) (see [36], Lemma 1.3.2). And,

we know that the Begman projection projfC is BSNE mapping which satisfies

F (projfC) = F̂ (projfC). So, by Lemma 2 in [32], projfC oA
f is a BSNE mapping

with F (projfC oA
f ) = F̂ (projfC oAf ). Hence, we have the following theorem:

Theorem 4.6. Let Ci, i = 1, 2, . . . , N be nonempty, closed and convex subsets
of X such that

C :=

N⋂
i=1

Ci 6= ∅.

Let Ai : X −→ X∗, i = 1, 2, . . . , N be BISM mappings such that Ci ⊂ domAi
and

S :=

N⋂
i=1

V I(Ci, Ai) 6= ∅.
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Let f : X −→ R be a Legendre function which is bounded, uniformly Fréchet
differentiable and totally convex on a bounded subset of X. Suppose that the
range condition (30) is satisfied for each Ai. Then, for each x0 ∈ C, the

sequence {xn} defined by Algorithm 3.1 with Ti = projfCi oA
f
i for all i =

1, 2, . . . , N , converges strongly to projfS(u) as n→ +∞.

5. Numerical experiment

In this section, the algorithm is implemented in MATLAB 2014a running
on a HP Compaq 510, Core(TM) 2 Duo CPU. T5870 with 2.0 GHz and 2GB
RAM.

Example 5.1. Consider the problem of finding an element x∗ ∈ C := ∩Ni=1Ci,
for

Ci = {x ∈ RN : 〈aCi , x〉 ≤ bCi },
where aCi ∈ RN , bCi ,∈ R for all i = 1, 2, . . . , N .

Next, we take the randomly generated values of the coordinates of aCi in
[1, 3] and bCi in [2, 4], respectively.

Clearly, C = ∩Ni=1Ci 6= ∅ because 0 ∈ C.

Remark 5.2. In this example, we define the function TOL by

TOLn =
1

N

N∑
i=1

‖xn − PCi
xn‖2

for all n ≥ 1. Note that, if at the nth step, TOLn = 0, then xn ∈ C, that is,
xn is a solution of this problem. So, we use the condition TOLn < err to stop
the iterative process.

Applying Theorem 4.1 to N = 50, N = 100, αn = 1/n for all n ≥ 1, and
u = x0 have the elements randomly generated in [10, 50], we have the following
table of numerical results.

Table 1. Table of numerical results for Example 5.1.

Stop condition: TOLn < err

err TOLn n Time (s)
10−2 9.661258e− 03 664 3.287
10−3 9.965119e− 04 2019 8.945
10−4 9.910501e− 05 6292 26.660
10−5 9.835176e− 06 19938 83.850

The behaviors of the function TOLn in Table 1 for the case TOLn < 10−4

is presented in the following figure.
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Figure 1. The behavior of TOLn with the stop condition
TOLn < 10−4.

Example 5.3. Consider the following problem: Find an element

x∗ ∈ S := ∩Ni=1GMEP (Θi, ϕi,Ψi),

where Θi(x, y) = i(‖y‖2 − ‖x‖2), ϕj(x) = ‖x‖2 and Ψi(x) = ix for all j =
1, 2, . . . , 50 and for all x, y ∈ R10. We can see that Θi satisfies the conditions
(A1)-(A4), ϕi is a continuous convex function, Ψi is a continuous monotone
mapping for each i = 1, 2, . . . , 50. It is easy to see that S = {(0, 0, 0)}.

Now, with f(x) = 1
2‖x‖

2, from the definition of ResfΘj ,ϕj ,Ψj
, for each x ∈

R10, we have

ResfΘj ,ϕj ,Ψj
(x) = {z ∈ R10 : j(‖y‖2 − ‖z‖2) + ‖y‖2 + j〈x, y − z〉

+ 〈z − x, y − z〉 ≥ ‖z‖2, ∀y ∈ R10}.

Hence, we obtain that

ResfΘj ,ϕj ,Ψj
(x) =

j − 1

2j + 3
x,

for all x ∈ R10 and for all j = 1, 2, . . . , 50. Now, applying Theorem 4.4 with
u = x0 have the elements randomly generated in [10, 50] and αn = 1/n for all
n ≥ 1, we obtain the following table of numerical results:

The behaviors of the functions TOLn in Table 2 for the case TOLn < 10−3

are presented in the following figure.
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Table 2. Table of numerical results for Example 5.3.

Stop condition: TOLn = ‖xn‖ < err

Algorithm 3.1 Iterative method (4)
err TOLn n err TOLn n
10−2 9.999425e− 03 6280 10−2 9.998964e− 03 9268
10−3 9.999902e− 04 62797 10−3 9.999935e− 04 92671
10−4 9.999998e− 05 627964 10−4 9.999999e− 05 926704
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Algorithm 3.1

Iterative method (1.4)

Figure 2. The behavior of TOLn with the stop condition
TOLn < 10−3.

6. Conclusions

In this paper, we have introduced and analyzed a new parallel algorithm for
finding a common fixed point of a finite family of Bregman strongly nonexpan-
sive mappings in a real reflexive Banach space (Algorithm 3.1 and Theorem
3.4). Some applications of our main results to some related problems are pre-
sented in Section 4. These problems include the convex feasibility problem
(Theorem 4.1), the problem of finding a common zeros of maximal monotone
mappings (Theorem 4.2), the system of generalized mixed equilibrium prob-
lems (Theorem 4.4), the problem of finding a common zeros of Bregman in-
verse strongly monotone mappings (Theorem 4.5) and the system of variational
inequalities (Theorem 4.6). Finally, in Section 5, we exhibit two numerical ex-
amples which illustrates the effectiveness of the proposed algorithm.
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