DOI QR코드

DOI QR Code

Constitutive Expression of Lipase on the Cell Surface of Escherichia coli using OmpC Anchoring Motif

  • Lee, Seung Hwan (Department of Biotechnology & Bioengineering, Chonnam National University) ;
  • Lee, Sang Yup (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering (BK21 Program), Institute of BioCentury, Korea Advanced Institute of Science and Technology)
  • Received : 2020.01.17
  • Accepted : 2020.01.21
  • Published : 2020.05.01

Abstract

We have developed a constitutive display system of the Pseudomonas fluorescens SIK W1 TliA lipase on the cell surface of Escherichia coli using E. coli outer membrane protein C (OmpC) as an anchoring motif, which is an economical compared to induced system. For the constitutive expression of truncated OmpC-TliA fusion proteins, gntT104 promoter was employed. Cell growth was not affected by over expression of fusion protein during entire culture time, suggesting cell lysis was not a problem. The localization of truncated OmpC-TliA fusion protein on the cell surface was confirmed by immunofluorescence microscopy and measuring whole cell lipase activity. Constitutively displayed lipase was very stable, retaining activity enantioselectivity throughout the five repeated reactions. These results suggest that OmpC from E. coli be a useful anchoring motif for displaying enzymes on the cell surface without any inducers, and this stable surface display system can be employed for a broad range of biotechnological applications.

Keywords

References

  1. Jaeger, K.-E., Dijkstra, B. W. and Reetz, M. T., "Bacterial Biocatalysts: Molecular Biology, Three-dimensional Structures, and Biotechnological Applications of Lipase," Annu. Rev. Microbiol., 53, 315-351(1999). https://doi.org/10.1146/annurev.micro.53.1.315
  2. Jaeger, K.-E. and Eggert, T., "Lipases for Biotechnology," Curr. Opin. Biotechnol., 13(4), 390-397(2002). https://doi.org/10.1016/S0958-1669(02)00341-5
  3. Reetz, M. T., "Lipases as Practical Biocatalysts," Curr. Opin. Chem. Biol., 6(2), 145-150(2002). https://doi.org/10.1016/S1367-5931(02)00297-1
  4. Stergiou, Y. S., Foukis, A., Filippou, M., Koukouritaki, M., Parapouli, M., Theodorou, L. G., Hatziloukas, E., Afendra, A., Pandey, A. and Papamichael, E. M., "Advances in Lipase-catalyzed Esterification Reactions," Biotechnol. Advan., 31(8), 1846-1859(2013). https://doi.org/10.1016/j.biotechadv.2013.08.006
  5. Gotor-Fernandez, V., Brieva, R. and Gotor, V., "Lipases: Useful Biocatalysts for the Preparation of Pharmaceuticals," J. Mol. Catal. B, 40(3-4), 111-120(2006). https://doi.org/10.1016/j.molcatb.2006.02.010
  6. Rodrigues, R. C., Virgen-Ortiz, J. J., dos Santos, J. C. S., Alcantar, A. R., Barbosa, O., Ortiz, C. and Fernandez-Lafuente, R., "Immobilization of Lipases on Hydrophobic Supports: Immobilization Mechanism, Advantages, Problems, and Solutions," Biotechnol. Adv., 37(5), 746-770(2019). https://doi.org/10.1016/j.biotechadv.2019.04.003
  7. Van Beilen, J. B. and Li, Z., "Enzyme Technology: an Overview," Curr. Opin. Biotechnol., 13(4), 338-344(2002). https://doi.org/10.1016/S0958-1669(02)00334-8
  8. Rodrigues, R. C., Ortiz, C. Berenguer-Murcia, A., Torres, R., and Fernandez-Lafuente, R., "Modifying Enzyme Activity and Selectivity by Immobilization, Chem. Soc. Rev., 42(15), 6290-6307 (2013). https://doi.org/10.1039/C2CS35231A
  9. Linqiu, C., Carrier-bound immobilized enzymes: principles, application and design, WILEY-VCH, Weinheim, Germany (2005).
  10. Krajewsk, B., "Application of Chitin- and Chitosan-based Materials for Enzyme Immobilizations: a Review," Enzyme Microbial. Technol., 35(2-3), 126-139(2004). https://doi.org/10.1016/j.enzmictec.2003.12.013
  11. Shiraga, S., Kawakami, M., Ishiguro, M. and Ueda, M., "Enhanced Reactivity of Rhizopus oryzae Lipase Displayed on Yeast Cell Surfaces in Organic Solvents: Potential as a Whole-cell Biocatalyst in Organic Solvents," Appl. Environ. Microbiol., 71(8), 4335-4338(2005). https://doi.org/10.1128/AEM.71.8.4335-4338.2005
  12. Georgiou, G., Stathopoulos, C., Daugherty, P. S., Nayak, A. R., Iverson, B. L. and Curtiss, R. I., "Display of Heterologous Proteins on the Surface of Microorganisms: from the Screening of Combinatorial Libraries to Live Recombinant Vaccines," Nat. Biotechnol., 15, 29-34(1997). https://doi.org/10.1038/nbt0197-29
  13. Lee, S. Y., Choi, J. H. and Xu, J., "Microbial Cell Surface Display," Trends Biotechnol., 21, 45-52(2003). https://doi.org/10.1016/S0167-7799(02)00006-9
  14. Smith, M. R., Khera, E. and Wen, F., "Engineering Novel and Improved Biocatalysts by Cell Surface Display," Ing. Eng. Chem. Res., 54(16), 4021-4031(2015). https://doi.org/10.1021/ie504071f
  15. Liu, Z., Ho, S-H., Hasunuma, T., Chang, J.-S., Ren, N.-Q. and Kondo, A., "Recent Advances in Yeast Cell-surface Display Technologies for Waste Biorefineries," Bioresour. Technol., 215, 324-333(2016). https://doi.org/10.1016/j.biortech.2016.03.132
  16. Matsumoto, T., Fukuda, H., Ueda, M., Tanaka, A. and Kondo, A., "Construction of Yeast Strains with High Cell Surface Lipase Activity by Using Novel Display Systems Based on the Flo1p Flocculation Functional Domain," Appl. Environ. Microbiol., 68(9), 4517-4522(2002). https://doi.org/10.1128/AEM.68.9.4517-4522.2002
  17. Shimazu, M., Nuyen A., Mulchandani, A. and Chen., W., "Cell Surface Display of Organophosphorus Hydrolase in Pseudomonas putida Using Ice Nucleation Protein Anchor," Biotechnol. Prog., 19, 1612-1614(2003). https://doi.org/10.1021/bp0340640
  18. Lee, S. H., Choi, J-I., Park, S. J., Lee, S. Y. and Park, B. C., "Display of Bacterial Lipase on the Escherichia coli Cell Surface by Using FadL as An Anchoring Motif and Its Use in Enantioselective Biocatalysis," Appl. Environ. Microbiol., 70, 5074-5080(2004). https://doi.org/10.1128/AEM.70.9.5074-5080.2004
  19. Han, Z., Han, S., Zheng, S. and Lin, Y., "Enhancing Thermostability of a Rhizomucor miehei Lipase by Engineering a Disulfide Bond and Displaying on the Yeast Cell Surface," Appl. Microbiol. Biotechnol., 85, 117-126(2009). https://doi.org/10.1007/s00253-009-2067-8
  20. Sambrook, J., and Russell, D. W., Molecular cloning: a laboratory manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (2001).
  21. Blattner, F. R., Plunkett, G., Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B. and Shao, Y., "The Complete Genome Sequence of Escherichia coli K-12," Science, 277, 1453-1462(1997). https://doi.org/10.1126/science.277.5331.1453
  22. Xu, Z. and Lee, S. Y., "Display of Polyhistidine Peptides on the Escherichia coli Cell Surface by Using Outer Membrane Protein C as An Anchoring Motif," Appl. Environ. Microbiol., 65, 5142-5147 (1999). https://doi.org/10.1128/AEM.65.11.5142-5147.1999
  23. Park, S. J., Park, J. P. and Lee, S. Y., "Metabolic Engineering of Escherichia coli for the Production of Medium-chain-length Polyhydroxyalkanoates Rich in Specific Monomers," FEMS Microbiol. Lett., 214, 217-222(2002). https://doi.org/10.1111/j.1574-6968.2002.tb11350.x
  24. Lee, S. H., Choi, J., Han, M-J., Choi, J. H. and Lee., S. Y., Display of Lipase on the Cell Surface of Escherichia coli Using OprF as An Anchor and Its Application to Enantioselective Resolution in Organic Solvent," Biotechnol. Bioeng., 90, 223-230(2005). https://doi.org/10.1002/bit.20399
  25. Jeanteur, D., Lakey, J. H. and Pattus, F., "The Bacterial Porin Superfamily: Sequence Alignment and Structure Prediction," Mol. Microbiol., 5, 2153-2164(1991). https://doi.org/10.1111/j.1365-2958.1991.tb02145.x
  26. Matsumoto, T., Ito, M., Fukuda, H. and Kondo, A., Enantioselective Transesterification Using Lipase-displaying Yeast Whole-cell Biocatalyst," Appl. Microbiol. Biotechnol., 64, 481-485(2004). https://doi.org/10.1007/s00253-003-1486-1
  27. Lee, H., Park, S. J., Han, M.-J., Eom, G. T., Choi, M.-J., Kim, S. H., Oh, Y. H., Song, B. K. and Lee, S. H., "Expression of a Lipase on the Cell-surface of Escherichia coli Using the OmpW Anchoring Motif and Its Application to Enantioselective Reactions," Biotechnol. Lett., 35(10), 1677-1683(2013). https://doi.org/10.1007/s10529-013-1260-0