DOI QR코드

DOI QR Code

Structural and Optical Properties of CuS Thin Films Grown by RF Magnetron Sputtering

RF 마그네트론 스퍼터링법으로 성장시킨 CuS 박막의 구조적 및 광학적 특성

  • Shin, Donghyeok (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, SangWoon (School of Materials Science and Engineering, Pusan National University) ;
  • Son, Chang Sik (Division of Materials Science and Engineering, Silla University) ;
  • Son, Young Guk (School of Materials Science and Engineering, Pusan National University) ;
  • Hwang, Donghyun (Division of Materials Science and Engineering, Silla University)
  • 신동혁 (부산대학교 재료공학과) ;
  • 이상운 (부산대학교 재료공학과) ;
  • 손창식 (신라대학교 신소재공학부) ;
  • 손영국 (부산대학교 재료공학과) ;
  • 황동현 (신라대학교 신소재공학부)
  • Received : 2020.01.09
  • Accepted : 2020.02.26
  • Published : 2020.02.29

Abstract

CuS (copper sulfide) thin films having the same thickness of 100nm were deposited on the glass substrates using by radio frequency (RF) magnetron sputtering method. RF powers were applied as a process variable for the growth of CuS thin films. The structural and optical properties of CuS thin films deposited under different power conditions (40-100W) were studied. XRD analysis revealed that all CuS thin films had hexagonal crystal structure with the preferential growth of (110) planes. As the sputtering power increased, the relative intensity of the peak with respect to the (110) planes decreased. The peaks of the two bands (264cm-1 and 474cm-1) indicated in the Raman spectrum exactly matched the typical spectral values of the covellite (CuS). The size and shape of the grains constituting the surface of the CuS thin films deposited under the power condition ranging from 40W to 80W hardly changed. However, the spacing between crystal grains tended to increase in proportion to the increase in sputtering power. The maximum transmittance of CuS thin films grown at 40W to 80W ranged from 50 % to 51 % based on 580nm wavelength, and showed a relatively small decrease of 48% at 100W. The band gap energy of the CuS thin films decreased from 2.62eV (at 40W) to 2.56eV (at 100W) as the sputtering power increased.

Keywords

References

  1. A.K. Sahoo, P. Mohanta, A.S. Bhattacharyy, Structural and optical properties of CuS thin films deposited by thermal co-evaporation, IOP conf. Ser.: Mater. Sci. Eng. 73 (2015) 012123. https://doi.org/10.1088/1757-899X/73/1/012123
  2. M. Adelifard, H. Eshghi, M.M. Bagheri Mohagheghi, Comparative studies of spray pyrolysis deposited copper sulfide nanostructural thin films on glass and FTO coated glass, Bull. Mater. Sci. 35 (2012) 739-744. https://doi.org/10.1007/s12034-012-0363-x
  3. H.S. Sanchez Rangel, A. Carrillo Castillo, J.F. Hernandez Paz, J.R. Farias Mancilla, H. Camacho Montes, P.E. Garcia Casillas, C.A. Martinez Perez, C.A. Rodriguez Gonzalez, Synthesis of copper sulfide (CuS) thin films by a solid-vapor reaction, Chalcogenide Lett. 12 (2015) 381-387.
  4. C. Lai, M. Lu, L. Chen, Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage, J. Mater. Chem. 22 (2012) 19-30. https://doi.org/10.1039/C1JM13879K
  5. C.H. Lai, K.W. Huang, J.H. Cheng, C.Y. Lee, B.J. Hwang, L. Chen, Direct growth of high-rate capability and high capacity copper sulfidenanowire array cathodes for lithium-ion batteries, J. Chen, J. Mater. Chem. 20 (2010) 6638-6645. https://doi.org/10.1039/c0jm00434k
  6. I. Puspitasari, T.P. Gujar, K.D. Jung, O.S. Joo, Simple chemical preparation of CuS nanowhiskers, Mater. Sci. Eng. B. 140 (2007) 199-202. https://doi.org/10.1016/j.mseb.2007.04.012
  7. X. Chen, Z. Wang, X. Wang, R. Zhang, X. Liu, W. Lin, Y. Qian, Synthesis of novel copper sulfide hollow spheres generated from copper (II)-thiourea complex, J. Cryst. Growth. 263 (2004) 570-574. https://doi.org/10.1016/j.jcrysgro.2003.12.004
  8. Y. Xie, G. Bertoni, A. Riedinger, A. Sathya, M. Prato, S. Marras, R. Tu, T. Pellegrino, L. Manna, Nanoscale transformations in covellite (CuS) nanocrystals in the presence of divalent metal cations in a mild reducing environment, Chem. Mater. 27 (2015) 7531-7537. https://doi.org/10.1021/acs.chemmater.5b03892
  9. L. De Trizio, L. Manna, Forging colloidal nanostructures via cation exchange reactions, Chem. Rev. 116 (2016) 10852-10887. https://doi.org/10.1021/acs.chemrev.5b00739
  10. F. Di Benedetto, M. Borgheresi, A. Caneschi, G. Chastanet, C. Cipriani, D. Gatteschi, G. Pratesi, M. Romanelli, R. Sessoli, First evidence of natural superconductivity: covellite, Eur. J. Mineral. 18 (2006) 283-287. https://doi.org/10.1127/0935-1221/2006/0018-0283
  11. S. Lindroos, A. Arnold, M. Leskela, Growth of CuS thin films by the successive ionic layer adsorption and reaction method, Appl. Surf. Sci. 158 (2000) 75-80. https://doi.org/10.1016/S0169-4332(99)00582-6
  12. M.I. Medina-Montes, E. Campos-Gonzalez, M. Morales-Luna, T.G. Sanchez, M. Becerril-Silva, S.A. Mayen-Hernandez, F. de Moure-Flores, J. Santos-Cruz, Development of phase-pure CuSbS2 thin films by annealing thermally evaporated CuS/Sb2S3 stacking layer for solar cell applications, Mater. Sci. Semicond. Process. 80 (2018) 74-84. https://doi.org/10.1016/j.mssp.2018.02.029
  13. C.J. Diliegros-Godines, D.I. Lombardero-Juarez, R. Machorro-Mejia, R. Silva Gonzalez, Mou Pal, Electrical properties and spectroscopic ellipsometry studies of covellite CuS thin films deposited from non ammoniacal chemical bath, Opt. Mater. 91 (2019) 147-154. https://doi.org/10.1016/j.optmat.2019.03.022
  14. F.A. Sabah, N.M. Ahmed, Z. Hassan, M.A. Almessiere, Influences of substrate type on the pH sensitivity of CuS thin films EGFET prepared by spray pyrolysis deposition, Mater. Sci. Semicond. Process. 63 (2017) 269-278. https://doi.org/10.1016/j.mssp.2017.02.032
  15. M.D. Khan, M.A. Malika, J. Akhtar, S. Mlowe, N. Revaprasadu, Phase pure deposition of flower-like thin films by aerosol assisted chemical vapor deposition and solvent mediated structural transformation in copper sulfide nanostructures, Thin Solid Films. 638 (2017) 338-344. https://doi.org/10.1016/j.tsf.2017.07.064
  16. N. Schneider, D. Lincot, F. Donsanti, Atomic layer deposition of copper sulfide thin films, Thin Solid Films. 600 (2016) 103-108. https://doi.org/10.1016/j.tsf.2016.01.015
  17. Y.B. He, A. Polity, I. Osterreicher, D. Pfisterer, R. Gregor, B.K. Meyer, M. Hardt, Hall effect and surface characterization of Cu2S and CuS films deposited by RF reactive sputtering, Phsica B. 308-310 (2001) 1069-1073. https://doi.org/10.1016/S0921-4526(01)00851-1
  18. F. Ghribi, A. Alyamani, Z. Ben Ayadi, K. Djessas, L. EL Mir, Study of CuS Thin Films for Solar Cell Applications Sputtered from Nanoparticles Synthesised by Hydrothermal Route, Energy Procedia. 84 (2015) 197-203. https://doi.org/10.1016/j.egypro.2015.12.314
  19. A.L. Patterson, The Scherrer Formula for I-Ray Particle Size Determination, Phys. Rev. 56 (1939) 978-982. https://doi.org/10.1103/PhysRev.56.978
  20. B. Minceva-Sukarova, M. Najdoski, I. Grozdanov, Raman spectra of thin solid films of some metal sulfides, J. Mol. Struct. 410 (1997) 267-270. https://doi.org/10.1016/S0022-2860(96)09713-X
  21. S.Y. Wang, W. Wang, Z.H. Lu, Asynchronous-pulse ultrasonic spray pyrolysis deposition of CuxS (x = 1, 2) thin films, Mater. Sci. Eng. B 103 (2003) 184-188. https://doi.org/10.1016/S0921-5107(03)00199-5
  22. J. Tauc, R. Grigorovici, A. Vancu, A. Optical properties and electronic structure of amorphous germanium, Phys. Stat. Sol. 15 (1966) 627-637. https://doi.org/10.1002/pssb.19660150224