DOI QR코드

DOI QR Code

MODULAR JORDAN TYPE FOR 𝕜[x, y]/(xm, yn) FOR m = 3, 4

  • Park, Jung Pil (Faculty of Liberal Education Seoul National University) ;
  • Shin, Yong-Su (Department of Mathematics Sungshin Women's University)
  • Received : 2018.11.04
  • Accepted : 2019.07.25
  • Published : 2020.03.01

Abstract

A sufficient condition for an Artinian complete intersection quotient S = 𝕜[x, y]/(xm, yn), where 𝕜 is an algebraically closed field of a prime characteristic, to have the strong Lefschetz property (SLP) was proved by S. B. Glasby, C. E. Praezer, and B. Xia in [3]. In contrast, we find a necessary and sufficient condition on m, n satisfying 3 ≤ m ≤ n and p > 2m-3 for S to fail to have the SLP. Moreover we find the Jordan types for S failing to have SLP for m ≤ n and m = 3, 4.

Keywords

Acknowledgement

Supported by : NRF

This paper was supported by the Basic Science Research Program of the NRF (Korea) under the grant No. NRF-2019R1F1A1056934.

References

  1. A. C. Aitken, The Normal Form of Compound and Induced Matrices, Proc. London Math. Soc. (2) 38 (1935), 354-376. https://doi.org/10.1112/plms/s2-38.1.354
  2. D. Cook, II, The Lefschetz properties of monomial complete intersections in positive characteristic, J. Algebra 369 (2012), 42-58. https://doi.org/10.1016/j.jalgebra.2012.07.015
  3. S. P. Glasby, C. E. Praeger, and B. Xia, Decomposing modular tensor products, and periodicity of Jordan partitions', J. Algebra 450 (2016), 570-587. https://doi.org/10.1016/j.jalgebra.2015.11.025
  4. J. A. Green, The modular representation algebra of a finite group, Illinois J. Math. 6 (1962), 607-619. http://projecteuclid.org/euclid.ijm/1255632708 https://doi.org/10.1215/ijm/1255632708
  5. T. Harima, T. Maeno, H. Morita, Y. Numata, A.Wachi, and J.Watanabe, The Lefschetz properties, Lecture Notes in Mathematics, 2080, Springer, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-38206-2
  6. T. Harima, J. Migliore, U. Nagel, and J. Watanabe, The weak and strong Lefschetz properties for Artinian K-algebras, J. Algebra 262 (2003), no. 1, 99-126. https://doi.org/10.1016/S0021-8693(03)00038-3
  7. D. G. Higman, Indecomposable representations at characteristic p, Duke Math. J. 21 (1954), 377-381. http://projecteuclid.org/euclid.dmj/1077465741 https://doi.org/10.1215/S0012-7094-54-02138-9
  8. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York, 1978.
  9. A. Iarrobino, P. M. Marques, and C. McDaniel, Artinian Algebras and Jordan type, arXiv:math.AC/1802.07383 (2018).
  10. K. Iima and R. Iwamatsu, On the Jordan decomposition of tensored matrices of Jordan canonical forms, Math. J. Okayama Univ. 51 (2009), 133-148.
  11. Y. R. Kim and Y.-S. Shin, An Artinian point-configuration quotient and the strong Lefschetz property, J. Korean Math. Soc. 55 (2018), no. 4, 763-783. https://doi.org/10.4134/JKMS.j170035
  12. D. E. Littlewood, Polynomial Concomitants and Invariant Matrices, J. London Math. Soc. 11 (1936), no. 1, 49-55. https://doi.org/10.1112/jlms/s1-11.1.49
  13. S. Lundqvist and L. Nicklasson, On the structure of monomial complete intersections in positive characteristic, J. Algebra 521 (2019), 213-234. https://doi.org/10.1016/j.jalgebra.2018.11.024
  14. J. Migliore and U. Nagel, Survey article: a tour of the weak and strong Lefschetz properties, J. Commut. Algebra 5 (2013), no. 3, 329-358. https://doi.org/10.1216/JCA-2013-5-3-329
  15. L. Nicklasson, The strong Lefschetz property of monomial complete intersections in two variables, Collect. Math. 69 (2018), no. 3, 359-375. https://doi.org/10.1007/s13348-017-0209-3
  16. W. E. Roth, On direct product matrices, Bull. Amer. Math. Soc. 40 (1934), no. 6, 461-468. https://doi.org/10.1090/S0002-9904-1934-05899-3
  17. B. Srinivasan, The modular representation ring of a cyclic p-group, Proc. London Math. Soc. (3) 14 (1964), 677-688. https://doi.org/10.1112/plms/s3-14.4.677
  18. R. P. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods 1 (1980), no. 2, 168-184. https://doi.org/10.1137/0601021
  19. J. Watanabe, The Dilworth number of Artinian rings and finite posets with rank function, in Commutative algebra and combinatorics (Kyoto, 1985), 303-312, Adv. Stud. Pure Math., 11, North-Holland, Amsterdam, 1987. https://doi.org/10.2969/aspm/01110303