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MODULAR JORDAN TYPE FOR k[x, y]/(xm, yn) FOR m = 3, 4

Jung Pil Park and Yong-Su Shin†

Abstract. A sufficient condition for an Artinian complete intersection

quotient S = k[x, y]/(xm, yn), where k is an algebraically closed field of

a prime characteristic, to have the strong Lefschetz property (SLP) was
proved by S. B. Glasby, C. E. Praezer, and B. Xia in [3]. In contrast, we

find a necessary and sufficient condition on m, n satisfying 3 ≤ m ≤ n

and p > 2m−3 for S to fail to have the SLP. Moreover we find the Jordan
types for S failing to have SLP for m ≤ n and m = 3, 4.

1. Introduction

Let R = k[x1, . . . , xr] =
⊕

i≥0Ri be an r-variable polynomial ring over an

algebraically closed field k of any characteristic, and let A := R/I, where I is
a homogeneous ideal of R. The Hilbert function of A, HA : N → N, is defined
by

HA(t) := dimkRt − dimk It

for t ≥ 0. If I is a homogeneous ideal with
√
I = (x1, . . . , xr), and c+ 1 is the

least positive integer such that (x1, . . . , xr)
c+1 ⊆ I, then

A = k⊕A1 ⊕ · · · ⊕Ac where Ac 6= 0.

In this case, we call c the socle degree of A. For the Artinian graded ring A,
the Hilbert function of A can be expressed as a vector

(h0, h1, . . . , hc) := (HA(0),HA(1), . . . ,HA(c)).

The Hilbert function (h0, h1, . . . , hc) ofA is unimodal if the vector (h0, h1, . . . , hc)

has only one local maximum, i.e.,

h0 ≤ h1 ≤ · · · ≤ ht = · · · = hs ≥ hs+1 ≥ · · · ≥ hc.
We say that the vector (h0, h1, . . . , hc) is symmetric if

hi = hc−i for i = 0, 1, . . . , b c2c.
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Let ` be a general enough linear form. We say that A has the weak Lefschetz
property (WLP) if the homomorphism induced by multiplication by `,

×` : Ai → Ai+1,

has maximal rank for all i (i.e., it is injective or surjective for each i). We say
that A has the strong Lefschetz property (SLP) if

×`d : Ai → Ai+d

has maximal rank for all i and d (i.e., it is injective or surjective for each i and
d). In this case, we call a linear form ` the strong Lefschetz element of A.

There is a way to characterize if an Artinian ring has the WLP or SLP based
on Jordan type (see [5, 11]). Here the Jordan type J`,M of ` ∈ m acting on an
A-module M is the partition, λ = (λ1, . . . , λt) with λ1 ≥ · · · ≥ λt, giving the
Jordan blocks of the multiplication map ×` : M →M ([9]). In particular, the
generic Jordan type of A is the Jordan type of A for a general enough linear
form `. We introduce an important tool to verify if an Artinian ring has the
WLP or SLP.

Lemma 1.1 ([5, Remark 3.63 and Proposition 3.64]). Assume that the Ar-
tininan algebra A is standard-graded (A is generated by A1) and that HA is
unimodal. Then

(1) The pair (A, `) has the weak Lefschetz property if and only if the number
of parts of the Jordan type J`,A = maxi{HA(i)}. (The Sperner number
of A);

(2) ` is a strong Lefschetz element of A if and only if J`,A = H∨A, where
H∨S is the conjugate of HS (exchange rows and columns in the Ferrers
diagram of HS).

Let S := k[x, y]/(xm, yn). When m ≤ n, HS = (1, 2, . . . ,m−1,m, . . . ,mn−1,
m − 1, . . . , 2, 1). In characteristic 0, the Jordan type J`,S = (λ1, . . . , λm) was
shown to be the standard partition, i.e.,

(1.1) J`,S = (m+ n− 1, . . . ,m+ n− 2i+ 1, . . . , n−m+ 1)

in 1934 by A. C. Aitken [1], in 1934 by W. E. Roth [16], and in 1936 by D.
E. Littlewood [12], independently. When the characteristic of k is a prime p,
the resulting formulas for J`,S were studied in 1954 by D. G. Higman [7], then
in 1962 by J. A. Green [4], and in 1964 by B. Srinivasan [17]. In particular,
B. Srinivasan proved that the Jordan type J`,S = (λ1, . . . , λm) is the standard
partition if the characteristic of k is p > m+ n− 2, and J. A. Green discussed
the representation ring over Zp. The paper [17] seems to be the first paper
emphasizing the characteristic p results in the present formulation related to
the Clebsch-Gordan formula.

The WLP and SLP are strongly connected to many topics in algebraic geom-
etry, commutative algebra, combinatorics, and representation theory. In 1980,
R. Stanley showed in [18] using a topological method - the hard Lefschetz
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property - that if k is a field of characteristic 0 or greater than the socle degree
of A := k[x1, . . . , xr]/(x

a1
1 , . . . , x

ar
r ), then the Artinian complete intersection

quotient A has the SLP. In 1987, J. Watanabe proved this again using the lan-
guage ‘representation theory’ [19]. In [13], S. Lundqvist and L. Nicklasson find
a necessary and sufficient condition of the SLP when the number of variables is
≥ 3. In 2013 J. Miglilore and U. Nagel surveyed recent works about Lefschetz
properties [14]. Also in 2013, the book [5] by J. Watanabe et al. provided a
comprehensive exploration of the Lefschetz properties from a different perspec-
tive, focusing on representation theory and combinatorial connections as well
as commutative algebra methods. In 2018, A. Iarrobino, P. Marques, and C.
McDaniel [9] explored a general invariant of an Artinian Gorenstein algebra A,
or A-module M , which is the set of Jordan types of elements of the maximal
ideal m of A.

The generic Jordan type of a graded Artinian algebra A is that determined
by a general enough element ` of A1. For S = k[x, y]/(xm, yn) we may take
` = x+y, so the Jordan type of S is the partition of mn giving the Jordan block
decomposition of the multiplication by `; this depends on the characteristic of
k.

When the characteristic of k is 0 or greater than or equal to m + n, the
partitions are the Clebsch-Gordan formulas of invariant theory [8], which have
many applications in physics and have been rediscovered or surveyed frequently
([1, 17], see also [6, Theorem 3.9] on Lefschetz properties of Artin algebras).
The significance in representation theory is that each factor k[x]/(xm) and
k[x]/(xn) is an irreducible representation of the Lie algebra sl2, and that the
Clebsch-Gordan formula (equation (1.1) above) of invariant theory [8] gives the
decomposition of the tensor product into irreducible representations ([5, Section
3]).

The papers S. B. Glasby et al. [3] and K. I. Iima et al. [10] have obtained
a very nice result in the direction of recursion formulas for the Jordan type
J`,S in (m,n) for a fixed prime p. There are approaches to this problem from
different directions and the S. B Glasby et al. paper [3], and briefly in Section
3.2 of A. Iarrobino et al. [9] include some survey of the previous characteristic
p Clebsch-Gordan results. Moreover, S. B. Glasby et al. proved that if m ≤ n,
and n 6≡ 0,±1, . . . ,±(m−2) (mod p), then the Jordan type J`,S = (λ1, . . . , λm)
of mn, where λ1 ≥ · · · ≥ λm is the standard partition of equation (1.1), whose
i-th part is λi = m+n−2i+1 for 1 ≤ i ≤ m. By Lemma 1.1, this is equivalent
to S having the SLP for such m and n.

Recall that S := k[x, y]/(xm, yn) = k[x]/(xm)⊗ k[y]/(yn) for m ≤ n, where
k is an algebraically closed field of positive characteristic p. In this paper,
we explore not only the Lefschetz property but also the Jordan type for S.
We also study modular representations of finite cyclic p groups. Given two
indecomposable modules V (m − 1) and V (n − 1) of a cyclic group order ps,
the Krull-Schmidt theorem implies that V (m − 1) ⊗ V (n − 1) is a sum of m
indecomposable modules V (λ1−1)⊕· · ·⊕V (λm−1). This is shown in [3, Lemma
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9] and implies by Lemma 1.1 that S has (always) the WLP. Then there are
forms f1, f2, . . . , fm such that deg fi = i− 1 for 0 ≤ i ≤ m− 1, and

fi 7→ fi` 7→ · · · 7→ fi`
λi−1

is a string of length λi. In other words, the ring S can be decomposed into
irreducible sl2-modules as

S := V (λ1 − 1)⊕ · · · ⊕ V (λm − 1).

Suppose that either 3 ≤ m ≤ n and p > 2m − 3 or 3 ≤ m < n and
p ≥ 2m − 3. In this paper, we show that if n ≡ 0,±1, . . . ,±(m − 2) (mod p),
then the Jordan type for S is not the standard partition, i.e., S fails to have
the SLP for such m and n (see Theorem 2.5). This result has an important
role to find the Jordan type for S with m = 3, 4. In Section 2, we prove a
necessary and sufficient condition on m and n that S fails to have the SLP
(see Corollary 2.6). In Section 3, we find other conditions that S fails to have
the SLP for m ≤ n and m = 3, 4. We also find the Jordan type for S for
such m and n in Section 4. These results in Section 4 for m = 3, 4 are the
same as the works in [3], but they [3] found the Jordan type for these rings
using the representation theory of algebraic group. More precisely, they used
new periodicity and duality result for J`,S that depend on the smallest p-power
exceeding m. In addition, in [10], K. Iima and R. Iwamatsu found a recursive
formula how to find the Jordan type for S. But, in this paper, we give a more
direct proof in Section 4 without any recursive formula in [10] or any results in
[3].

We are posting some calculations in the proofs of Theorems 4.4, 4.5, and 4.6
to Arxiv to make this paper shorter (see modular jordan type-full.pdf).

Acknowledgement. This project was motivated by a discussion with An-
thony Iarrobino when the second author attended the Lefschetz property work-
shop in Stockholm, 2017. The authors are thankful to a reviewer for their
extensive and valuable comments and suggestions.

2. A necessary and sufficient condition that k[x, y]/(xm, yn) fails to
have the SLP

In this section, we find a necessary and sufficient condition for S to fail to
have the SLP when 3 ≤ m ≤ n and p > 2m− 3 or 3 ≤ m < n and p ≥ 2m− 3.
In [15, Theorem 3.2], L. Nicklasson also find a necessary and sufficient condition
of the SLP for S using the base p expansions of m,n.

We now recall the sufficient condition for S to have the SLP from [3].

Theorem 2.1 ([3, Theorem 2]). Let S := k[x, y]/(xm, yn) with char k = p > 0.
If 0 < m ≤ n and n 6≡ 0,±1, . . . ,±(m− 2) (mod p), then S has the SLP.

We shall show that if p > 2m − 3 and n ≡ 0,±1, . . . ,±(m − 2) (mod p),
then S fails to have the SLP. We first need the following two lemmas.

http://web.sungshin.ac.kr/~ysshin/modular.pdf
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Lemma 2.2. Suppose that 3 ≤ m ≤ n and p is a prime with p > m − 1. If
n ≡ −k (mod p) with 0 ≤ k ≤ m− 2, then(

n+m− 2

m− 1

)
≡ 0 (mod p).

Proof. By the assumption, (m−1)! 6≡ 0 (mod p) and n+m−2 > m−1. Since
n+ k ≡ 0 (mod p), we have(

n+m−2

m−1

)
=

(n+(m−2))(n+(m−3)) · · · (n+k) · · · (n+1)n

(m−1)!
≡ 0 (mod p),

as we wished. �

Lemma 2.3. Let p be a prime. Suppose that either 3 ≤ m ≤ n and 2m−3 < p
or 3 ≤ m < n and 2m− 3 ≤ p. If n ≡ k (mod p) with k = 1, 2, . . . ,m− 2, then
the following hold.

(a) For any 1 ≤ α ≤ k and α ≤ β ≤ min{k, n+α−k−1} with m−k−α+β <
p, (

n+m− 2k − 1

m− k − α+ β

)
≡ 0 (mod p).

(b) (
n+m− 2k − 1

m− k − 1

)
6≡ 0 (mod p).

Proof. First note that, with given conditions,

n+m− 2k − 1 = (n− k) + (m− k)− 1 ≡ m− k − 1 6≡ 0 (mod p).

(a) For 1 ≤ α ≤ k and α ≤ β ≤ min{k, n+α−k−1}, since m−k−α+β < p,
we get that

(m− k − α+ β)! 6≡ 0 (mod p).

Moreover, note that

n+m− 2k − 1 = (n− k) + (m− k − 1) > n− k ≡ 0 (mod p), and

n− k + α− β ≤ n− k.
This shows that

n+m− 2k − 1 > p > m− k − α+ β,

and thus(
n+m− 2k − 1

m− k − α+ β

)
=

(n+m− 2k − 1)(n+m− 2k − 2) · · · (n− k + α− β)

(m− k − α+ β)!

≡ 0 (mod p).

(b) Note that m− k − 1 < p and

n+m− 2k − 1 = (n− k) + (m− k − 1) > m− k − 1.

Since 1 ≤ k ≤ m− 2, for any γ = 0, 1, . . . ,m− k − 2, we have

n+m− 2k − 1− γ = (n− k) + (m− k − 1)− γ



288 J. P. PARK AND Y. S. SHIN

≡ (m− k − 1)− γ 6≡ 0 (mod p).

This shows that(
n+m− 2k − 1

m− k − 1

)
=

(n+m− 2k − 1)(n+m− 2k − 2) · · · (n− k + 1)

(m− k − 1)!

6≡ 0 (mod p).

This completes the proof. �

Remark 2.4. If m = n = 3, k = 1, and p = 2m − 3 = 3, then the formula of
Lemma 2.3(b) is not satisfied. Indeed,(

n+m− 2k − 1

m− k − 1

)
=

(
3

1

)
≡ 0 (mod 3).

Theorem 2.5. Let S = k[x, y]/(xm, yn), where k is a field of a prime charac-
teristic p. Suppose that either 3 ≤ m ≤ n and p > 2m − 3 or 3 ≤ m < n and
p ≥ 2m− 3. If n ≡ 0,±1, . . . ,±(m− 2) (mod p), then S fails to have the SLP.

Proof. First, note that since n+m− 2 > n ≥ m, both of x and y cannot be an
SLP element for S. Thus it is enough to show that any linear form ` := x+ y
cannot be an SLP element of S.

(i) Suppose that n ≡ −k (mod p) with 0 ≤ k ≤ m − 2. By Lemma 2.2, we
have

(x+ y)n+m−2 =

(
n+m− 2

m− 1

)
xm−1yn−1 = 0.

Hence the first (largest) component of the Jordan type J`,S is ≤ n+m−2, i.e.,
the Jordan type J`,S is of the form

J`,S = (≤ n+m− 2, . . . ),

and thus S fails to have the SLP.
(ii) Now suppose that n ≡ k (mod p) with 1 ≤ k ≤ m − 2. We shall show

that the (k + 1)-st component of J`,S cannot be n+m− 2k − 1. Let

Pk := b0x
k + b1x

k−1y + · · ·+ bk−1xy
k−1 + bky

k

be a nonzero form of degree k in k[x, y]. Let i be the smallest integer with
bi 6= 0, i.e., Pk = bix

k−iyi + · · · + bk−1xy
k−1 + bky

k. Since xm = 0, yn = 0 in
S, we have

Pk · (x+ y)n+m−2k−1

=
[
bix

k−iyi + bi+1x
k−i−1yi+1 + · · ·+ bk−1xy

k−1 + bky
k
]
· (x+ y)n+m−2k−1

=

k∑
α=1

(
v(α)∑

β=u(α)

bβ

(
n+m− 2k − 1

m− α− k + β

))
xm−αyn+α−k−1,
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where u(α) = max{i,−m + α + k}, and v(α) = min{k, n + α − k − 1}. Now
consider the coefficient of xm−(i+1)yn+i−k in Pk · (x+ y)n+m−2k−1. Since

u(i+ 1) = max{i,−m+ (i+ 1) + k} = i, and

v(i+ 1) = min{k, n+ (i+ 1)− k − 1} ≥ i,

we get that by Lemma 2.3, the coefficient is

v(i+1)∑
β=i

bβ

(
n+m− 2k − 1

m− k − (i+ 1) + β

)
= bi

(
n+m− 2k − 1

m− k − 1

)
6≡ 0 (mod p).

(Here, note that m − k − (i + 1) + β < p for any i ≤ β ≤ min{k, n + i − k}.)
Hence

Pk · (x+ y)n+m−2k−1 6= 0.

This shows that for a linear form ` ∈ R, the Jordan type J`,S cannot be of
the form

(. . . ,
(k+1)-st

n+m− (2k + 1), . . . ).

Thus S fails to have the SLP.
This completes the proof. �

If we couple Theorem 2.5 with Theorem 2.1, we obtain the following corol-
lary.

Corollary 2.6. Let S = k[x, y]/(xm, yn) with 3 ≤ m ≤ n and p > 2m − 3.
Then a necessary and sufficient condition that S fails to have the SLP is n ≡
0,±1, . . . ,±(m− 2) (mod p).

3. Other conditions that k[x, y]/(xm, yn) fails to have the SLP

In Section 2, we determined when S = k[x, y]/(xm, yn) fails to have SLP for
3 ≤ m ≤ n and p > 2m − 3. In this section we consider the remaining cases
when m = 3 or m = 4. Assume m = 3, 4 and m ≤ n. Then we show that
S = k[x, y]/(xm, yn) fails the SLP as summarized in the follow table:

Theorem m p S fails the SLP

Theorem 3.2 3 2 n ≡ 0,±1 (mod 4)
Proposition 3.3 3 3 always
Theorem 3.4 3 p ≥ 3 n ≡ 0,±1 (mod p)
Theorem 3.5 4 2 always
Theorem 3.6 4 3 n 6≡ ±4 (mod 9)
Lemma 3.7 4 5 n ≥ 4
Theorem 3.8 4 p ≥ 7 n ≡ 0,±1,±2 (mod p)

Remark 3.1. Recall S := k[x, y]/(xm, yn) with m ≤ n. As we mentioned in
the introduction, for a linear form ` = x + y, the Jordan type J`,S is of the
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form (λ1, . . . , λm) where λ1 + · · · + λm = mn. In this case there are forms
f1, f2, . . . , fm such that deg fi = i− 1 for 0 ≤ i ≤ m− 1, and

fi 7→ fi` 7→ · · · 7→ fi`
λi−1

is a string of length λi. In other words, the ring S has the sl2-module decom-
position as follows.

S = k[x, y]/(xm, yn) =

m⊕
i=1

V (λi − 1),

where V (λi − 1) is a λi-dimensional irreducible sl2-module for each i.
Recall that the Hilbert function of S is

HS(i) = min{i+ 1,m+ n− 1− i} for i ≥ 0.

In order for S to have the SLP we need that for each i satisfying 0 ≤ i ≤ m+n−2
the following sets are linearly independent

(3.1)



{f1`i, f2`i−1, . . . , fi`, fi+1}
for 0 ≤ i ≤ m− 1,

{f1`i, f2`i−1, . . . , fm−1`i−(m−2), fm`i−(m−1)}
for m ≤ i ≤ n− 1,

{f1`i, f2`i−1, . . . , fm+n−2−i`
2i+3−m−n, fm+n−1−i`

2i+2−m−n}
for n ≤ i ≤ m+ n− 2.

However, if S fails to have the SLP, we have to find the different linearly
independent sets for each degree-i based on Jordan type J`,S = (λ1, . . . , λm).
Fortunately, it is not hard to prove that those sets are linearly independent for
0 ≤ i ≤ m+ n− 2. We shall omit the proof for the linear independence of the
sets in general except for a few of cases (e.g., the proof of Theorem 3.6) in the
rest of this paper.

3.1. char k ≥ 2 and m = 3

Theorem 3.2 is known by [2], and we give a different proof based on the
Jordan type argument. We also investigate Jordan type when the ring S =
k[x, y]/(x3, yn) fails to have the SLP for n ≥ 3, i.e., it has only the WLP.
Recall that if S has the SLP for a Lefschetz element `, then the Jordan type
J`,S for S is (n+ 2, n, n− 2) (see Lemma 1.1).

Theorem 3.2 (char k = 2). Let S := k[x, y]/(x3, yn) with char k = 2 and
n ≥ 3. Then S has the SLP if and only if n = 2k, where k is an odd positive
integer with k ≥ 3. In other words, S fails to have the SLP for n ≡ 0,±1
(mod 4).

Proof. By a computer calculation, one can show that for 3 ≤ n ≤ 5, S does
not have the SLP.
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Now consider the case (3, n) with n ≥ 6. Then the socle degree of R/(x3, yn)
is n+ 1. Note that we have only three kind of linear forms, namely,

x, y, x+ y.

But the strings from x and y are

1 7→ x 7→ x2, and
1 7→ y 7→ y2 7→ · · · 7→ yn−1.

These two forms do not give a string of length (n+ 2). Furthermore, the linear
form ` = x+ y satisfies

(x+ y)n+1 =

(
n+ 1

2

)
x2yn−1.

(i) If 4 | n or 4 | (n + 1), then x + y cannot give a string of length (n + 2).
Thus R/(x3, yn) does not have the SLP.

(ii) We now assume that 4 - n and 4 - (n+ 1).

• Let n be an odd. Since 4 - (n + 1), we get that n = 4k + 1 for some
k ≥ 2. So 4 | (n− 1).

x(x+ y)n = x ·
(
n

1

)
xyn−1 = nx2yn−1 6= 0.

y(x+ y)n−1 = y ·
(
n− 1

2

)
x2yn−3 =

(n− 1)(n− 2)

2
x2yn−2 = 0.

So the Jordan type J`,S is not of the form (−, n,−) with a linear form
` = x+ y, i.e., R/(x3, yn) does not have the SLP.
• Let n = 2α with α is an odd, so n = 4k + 2 for some k ≥ 1. Hence

4 | (n− 2), and so the above two forms have to be 0. But,

x(x+ y)n−1 = x ·
(
n− 1

1

)
xyn−2 = (n− 1)x2yn−2 6= 0,

y2(x+ y)n−3 = yn−1 + (n− 3)xyn−2 +
(n− 3)(n− 4)

2
x2yn−3 6= 0.

In degree (n+1), a single form x2yn−1 is obviously linearly independent.
Now consider two forms in degree n. I.e.,

(x+ y)n = x2yn−2,

x(x+ y)n−1 = x2yn−2 + yn−1,

which are linearly independent. We now consider three forms in degree
(n− 1). I.e.,

(x+ y)n−1 = x2yn−3,

x(x+ y)n−2 = x2yn−3 + yn−1,

y2(x+ y)n−3 = x2yn−3 − xyn−2 + yn−1,
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which are linearly independent as well. So the Jordan type J`,S is of
the form (n + 2, n, n − 2) with a linear form ` = x + y. Therefore,
R/(x3, yn) has the SLP.

This completes the proof. �

Proposition 3.3 (char k = 3). Let S := k[x, y]/(x3, yn) with char k = 3 and
n ≥ 3. Then S fails to have the SLP.

Proof. Note that

(x+ y)n+1 =

(
n+ 1

2

)
x2yn−1.

So if n ≡ 0,−1 (mod 3), then the above equation is 0, i.e., a linear form
` = x+ y does not give a string of length (n+ 2).

If n ≡ 1 (mod 3), then

x(x+ y)n = nx2yn−1 = x2yn−1 6= 0,

and
y(x+ y)n = 0.

I.e., the Jordan type J`,S with ` = x+ y cannot be of the form

J`,S = (λ1, n, λ3),

and so S fails to have the SLP, as we wished. �

Theorem 3.4 (char k ≥ 3). Let S := k[x, y]/(x3, yn) with char k = p ≥ 3 and
n ≥ 3. If n ≡ 0,±1 (mod p), then S fails to have the SLP. Otherwise, S has
the SLP. In particular, if char k = 3, then S fails to have the SLP for any
n ≥ 3.

Proof. It is immediate that the two linear forms x and y do not give a string
of length of n+ 2. So it is enough to consider a linear form ` = x+ y.

By Proposition 3.3, this theorem holds for char k = 3. So we now suppose
that char k ≥ 5.

(1) Let n = pα, pα− 1 and α ≥ 1. Then p |
(
n+1
2

)
and p |

(
n+1
3

)
. So

(x+ y)n+1 = 0,

i.e., for any linear form ` in R the Jordan type J`,S is of the form

J`,S = (< n+ 2, . . . ).

This implies that S fails to have the SLP.
(2) Let n = pα+1. Then p |

(
n
2

)
, p |

(
n
3

)
, p | (n−1), p |

(
n−1
2

)
, and p |

(
n−1
3

)
.

Hence

x(x+ y)n = x2yn−1 6= 0,

y(x+ y)n−1 = 0.

This shows that for any linear form L = x+ by with b ∈ k,

L(x+ y)n 6= 0,
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i.e., for a linear form ` = x+ y ∈ R, the Jordan type J`,S is of the form

J`,S = (λ1, λ2, λ3)

with λ2 > n. Thus S fails to have the SLP.
(3) Let n 6≡ 0,±1 (mod p). By Theorem 2.1, S has the SLP. Hence for a

linear form ` = x+ y, the Jordan type J`,S is

J`,S = (n+ 2, n, n− 2).

This completes the proof. �

3.2. char k ≥ 2 and m = 4

Note that if S = k[x, y]/(x4, yn) has the SLP for a Lefschetz element `, then
the Jordan type J`,S for S is (n+ 3, n+ 1, n− 1, n− 3). The following theorem
is known by [2, Corollary 4.8], and we introduce a new proof based on Jordan
type argument for a linear form ` = x+ y.

Theorem 3.5 (char k = 2). Let S := k[x, y]/(x4, yn) and char k = 2 and
n ≥ 4. Then S fails to have the SLP.

Proof. Note that we have only three kind of linear forms, namely,

x, y, x+ y.

But for a linear form x, y, the Jordan types are

Jx = (4, 4, . . . , 4) := [4n],

Jy = (n, n, n, n) := [n4].

So two linear forms x and y are not strong Lefschetz elements. Now consider
a linear form ` = x+ y, and note that

(x+ y)n+3 =

(
n+ 3

3

)
x3yn−1.

(a) If n ≡ ±1, 2 (mod 4), then

(x+ y)n+3 =

(
n+ 3

3

)
x3yn−1 = 0,

and so the Jordan type J`,S is of the form

J`,S = (λ1, . . . )

with λ1 ≤ n+ 2, and thus S fails to have the SLP.
(b) We now assume that n ≡ 0 (mod 4). By a simple calculation, the Jordan

type is

J`,S = (n, n, n, n) = [n4].

This implies that S fails to have the SLP.
This completes the proof. �
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Theorem 3.6 (char k = 3). Let S := k[x, y]/(x4, yn) with char k = 3 and
n ≥ 4. If n 6≡ ±4 (mod 9), then S fails to have the SLP. Otherwise S has the
SLP.

Proof. (1) Assume n = 9α, 9α − 1, 9α − 2, with α ≥ 1. Note that 3 |
(
n+2
3

)
.

Then

(x+ y)n+2 =

(
n+ 2

3

)
x3 · yn−1 = 0,

which implies that any linear form x+ y cannot give a string of length (n+ 3).
Thus the ring S fails to have the SLP.

(2) Let n = 9α+ 1 with α ≥ 1. Note that 3 |
(
n
2

)
and 3 |

(
n
3

)
. So

y(x+ y)n =

(
n

2

)
x2yn−1 +

(
n

3

)
x3yn−2 = 0, and

x(x+ y)n =

(
n

2

)
x3yn−2 = 0.

Thus for any a ∈ k− {0},
(ax+ y)(x+ y)n = 0,

as well. This implies that for a linear form ` = x+ y the Jordan type J`,S is of
the form

J`,S = (λ1, λ2, λ3, λ4)

with λ2 < n+ 1. Hence the ring S fails to have the SLP.
(3) Let n = 9α± 3 with α ≥ 1. Note that 3 |

(
n
2

)
and 3 -

(
n+1
3

)
. So

y(x+ y)n+1 =

(
n+ 1

3

)
x3yn−1 6= 0, and

x(x+ y)n =

(
n

2

)
x3yn−2 = 0.

Thus,

(x+ y)(x+ y)n+1 6= 0.

This implies that for any linear form ` the Jordan type J`,S is of the form

J`,S = (λ1, λ2, λ3, λ4)

with λ2 > n+ 1. Hence the ring S fails to have the SLP.
(4) Let n = 9α+ 2 with α ≥ 1. Note that 3 - (n− 1) = (9α+ 1), 3 |

(
n−2
2

)
,

and 3 |
(
n−2
3

)
. For every a ∈ k− {0},

x2(x+ y)n−1 = x2yn−1 + (n− 1)x3yn−2 6= 0,

xy(x+ y)n−1 = (n− 1)x2yn−1 6= 0, and

y2(x+ y)n−2 = (n− 2)xyn−1 +

(
n− 2

2

)
x2yn−2 +

(
n− 2

3

)
x3yn−3 = 0.
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Since one can easily show that the above two nonzero forms are linearly inde-
pendent, we see that for any (γ, δ) 6= (0, 0),

(γx2 + δxy)(x+ y)n−1 6= 0,

which implies that for any linear form ` the Jordan type J`,S is of the form

J`,S = (λ1, λ2, λ3, λ4)

with λ3 > n− 1. Thus the ring S fails to have the SLP.
(5) Let n = 9α + 4 with α ≥ 0. Note that 3 -

(
n+2
3

)
and 3 |

(
n−1
2

)
. Let

` = x + y. We shall find four forms L,Q, and C of degrees 1, 2, and 3 which
give strings of length n+ 3, n+ 1, n− 1, and n− 3, respectively.

First, let ` = x+ y. Then

(x+ y)n+2 =

(
n+ 2

3

)
x3yn−1 = 2x3yn−1 6= 0.

Since

x(x+ y)n = nx2yn−1 +

(
n

2

)
x3yn−2 = x2yn−1, and

y(x+ y)n =

(
n

2

)
x2yn−1 +

(
n

3

)
x3yn−2 = x3yn−2,

we can take L = x− y - x+ y. Then

(x− y)(x+ y)n = x2yn−1 − x3yn−2 6= 0, and

(x− y)(x+ y)n+1 =

(
n+ 1

2

)
x3yn−1 = 0.

Now let Q = α1x
2 + α2xy + α3y

2 for some αi ∈ k, and assume that

Q · (x+ y)n−2 6= 0, and

Q · (x+ y)n−1 = 0.

By a simple calculation, one can find that Q = xy - x+ y. Indeed,

xy(x+ y)n−2 = xyn−1 + (n− 2)xyn−2 +

(
n− 2

2

)
x3yn−3

= xyn−1 − x2yn−2 + x3yn−3 6= 0, and

xy(x+ y)n−1 = (xyn−1 − x2yn−2 + x3yn−3)(x+ y) = 0.

We now find a cubic form C = β1x
3 + β2x

2y + β3xy
2 + β4y

3 with βi ∈ k such
that

C · (x+ y)n−4 6= 0, and

C · (x+ y)n−3 = 0.
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By a simple calculation, we find C = x3−xy2+xy2−y3. In fact, since 3 |
(
n−4
2

)
and 3 |

(
n−4
3

)
, we have

x3(x+ y)n−4 = x3yn−4,

x2y(x+ y)n−4 = x2yn−3,

xy2(x+ y)n−4 = xyn−2, and

y3(x+ y)n−4 = yn−1.

In other words,

(x3 − xy2 + xy2 − y3)(x+ y)n−4 = x3yn−4− x2yn−3+ xyn−2− yn−1 6= 0, and

(x3 − xy2 + xy2 − y3)(x+ y)n−3 = (x3yn−4 − x2yn−3 + xyn−2 − yn−1)(x+ y)

= 0.

We now prove that the four forms

(x+ y)n−1, L · (x+ y)n−2, Q · (x+ y)n−3, C · (x+ y)n−4

are linearly independent. Assume that for some αi ∈ k
α1(x+ y)n−1 + α2L · (x+ y)n−2 + α3Q · (x+ y)n−3 + α4C · (x+ y)n−4 = 0.

After we multiply by (x+ y)3 to the above equation, we obtain that

α1(x+ y)n+2 = 0, i.e., α1 = 0.

By a similar argument, we can easily show that

α2 = α3 = α4 = 0

as well. This shows that the above four forms are linearly independent. By an
analogous argument as above, one can easily show that the following three sets

{(x+ y)n, L · (x+ y)n−1, Q · (x+ y)n−2},
{(x+ y)n+1, L · (x+ y)n}, and
{(x+ y)n+2}

are linearly independent, respectively. Thus the Jordan type J`,S is

J`,S = (n+ 3, n+ 1, n− 1, n− 3)

and hence the ring S has the SLP.
(6) Let n = 9α + 5 with α ≥ 0. Note that 3 -

(
n+2
3

)
and 3 |

(
n−1
2

)
, and

3 |
(
n+1
2

)
. Let ` = x + y. By an analogous argument as in Case (5), one can

find that
L = x, Q = x2 − xy − y2, C = x3 − xy2 − y3.

Indeed,

(x+ y)n+2 =

(
n+ 2

3

)
x3yn−1 = 2x3yn−1 6= 0,



MODULAR JORDAN TYPE 297

x(x+ y)n = nx2yn−1 +

(
n

2

)
x3yn−2 = 2yn−1 + x3yn−2 6= 0, and

x(x+ y)n+1 =

(
n+ 1

2

)
x3yn−1 = 0.

Moreover, note that

x2(x+ y)n−2 = x2yn−2,

xy(x+ y)n−2 = xyn−1, and

y2(x+ y)n−2 = x3yn−3,

which implies that

(x2 − xy − y2)(x+ y)n−2 = −xyn−1 + x2yn−2 − x3yn−3 6= 0, and

(x2 − xy − y2)(x+ y)n−1 = (−xyn−1 + x2yn−2 − x3yn−3)(x+ y) = 0.

Since 3 |
(
n−4
2

)
and 3 |

(
n−4
3

)
, we get that

x3(x+ y)n−4 = x3yn−4,

xy2(x+ y)n−4 = xyn−2 + x2yn−3, and

y3(x+ y)n−4 = yn−1 + xyn−2,

i.e.,

(x3 − xy2 − y3)(x+ y)n−4 = −yn−1 + xyn−2 − x2yn−3 + x3yn−4 6= 0, and

(x3 − xy2 − y3)(x+ y)n−3 = (−yn−1 + xyn−2 − x2yn−3 + x3yn−4)(x+ y) = 0.

By a similar argument as in Case (5), one can show that the following four
sets

{(x+ y)n−1, L · (x+ y)n−2, Q · (x+ y)n−3, C · (x+ y)n−4},
{(x+ y)n, L · (x+ y)n−1, Q · (x+ y)n−2}, and

{(x+ y)n+1, L · (x+ y)n},
{(x+ y)n+2}

are linearly independent, respectively. Thus the Jordan type J`,S is

J`,S = (n+ 3, n+ 1, n− 1, n− 3)

as we wished, and hence the ring S has the SLP.
This completes the proof. �

We now move on to char k ≥ 5. Let S := k[x, y]/(x4, yn) with char k = 5
and n ≥ 4. Then

H∨S = (n+ 3, n+ 1, n− 1, n− 3).

Note that
x(x+ y)n+2 = y(x+ y)n+2 = 0.
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Hence two linear forms x and y cannot give a string of length (n + 3). So we
shall assume that a linear form is ` = x+ y for the rest of this section.

Lemma 3.7 (char k = 5). Let S := k[x, y]/(x4, yn) with char k = 5 and n ≥ 4.
Then S fails to have the SLP for every n ≥ 4.

Proof. If n = 4, then

(x+ y)6 = 0,

i.e., the Jordan type J`,S cannot be of the form

J`,S = (7, 5, 3, 1).

Furthermore, since p = 5 ≥ 2 · 4 − 3 = 2 · m − 3, by Theorem 2.5 for every
n ≡ 0,±1,±2 (mod 5), i.e., for every n ≥ 5, S fails to have the SLP. This
completes the proof. �

We now classify the Jordan type for an Artinian ring S := k[x, y]/(x4, y4) for
any characteristic p > 0. Recall that S has the SLP for p = 3 and (m,n) = (4, 4)
(see Theorem 3.6), but S fails to have the SLP for p = 5 and (m,n) = (4, 4)
(see Lemma 3.7). So we assume that char k = p ≥ 7 for the following theorem.

Recall that by Theorem 2.5 and Lemma 3.7 the ring S := k[x, y]/(x4, yn)
with char k ≥ 5 fails to have the SLP for any n ≥ 4 with n ≡ 0,±1,±2
(mod p). By Theorems 2.1 and 2.5, the following theorem is immediate, and
thus we omit the proof.

Theorem 3.8 (char k = p ≥ 7). Let S := k[x, y]/(x4, yn) with char k = p ≥ 7
and n ≥ 4. Then S has the SLP for n ≡ ±3, . . . ,±p−12 (mod p). Otherwise, S
fails to have the SLP.

4. The Jordan type for rings k[x, y]/(xm, yn) failing to have the
SLP when m is 3 or 4

In this section, we determine the Jordan type for an Artinian complete
intersection quotient S := k[x, y]/(xm, yn) for m = 3, 4 with char k = p > 0. In
order to shorten the paper, we are posting full calculations for proofs of some
Theorems of this section on the arXiv version of the paper (see modular jordan
type-full.pdf).

4.1. char k ≥ 2 and m = 3

Theorem 4.1 (char k = 2). Let S := k[x, y]/(x3, yn) with char k = 2 and
n ≡ 0,±1 (mod 4). Then for a linear form ` = x + y, the Jordan type J`,S is
as follows.

J`,S
n ≡ 0 (mod 4) (n, n, n)
n ≡ −1 (mod 4) (n+ 1, n+ 1, n− 2)
n ≡ 1 (mod 4) (n+ 2, n− 1, n− 1)

http://web.sungshin.ac.kr/~ysshin/modular.pdf
http://web.sungshin.ac.kr/~ysshin/modular.pdf
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Proof. Recall that S fails to have the SLP for n ≡ 0,±1 (mod 4) and S has the
SLP for n ≡ 2 (mod 4) (see Theorem 3.2). Since there is no quadratic form Q
such that the product

Q · (x+ y)n−4 6= 0, and

Q · (x+ y)n−3 = 0,

J`,S is of the form

J`,S = (n+ 2, λ2, λ3)

with n+ 2 ≥ λ2 ≥ λ3 ≥ n− 2.
(a) Assume n ≡ 0 (mod 4). Let 4 | n with n ≥ 4. Note that

(x+ y)n−1 = (n− 1)xyn−2 + yn−1 6= 0,

(x+ y)n = 0.

In other words,

J`,S = (n, n, n).

(b) Let n ≡ 1 (mod 4). Let ` = x + y with n ≥ 4. But S fails to have the
SLP, i.e., J`,S is not of the form

J`,S = (n+ 2, n, n− 2).

Furthermore, it is easy to prove that each of the following three sets

{(x+ y)n−1, y(x+ y)n−2, y2(x+ y)n−3},
{(x+ y)n, y2(x+ y)n−2},
{(x+ y)n+1},

is linearly independent, respectively. In other words,

J`,S = (n+ 2, n− 1, n− 1).

(c) Let n ≡ −1 (mod 4). Since there is no linear form L 6= x+ y such that

L · (x+ y)n = 0,

and

(x+ y)n = x2yn−2 + xyn−1 6= 0,

(x+ y)n+1 = 0,

J`,S is of the form

J`,S = (n+ 1,≥ n+ 1,≥ n− 2).

So J`,S is

J`,S = (n+ 1, n+ 1, n− 2).

This completes the proof. �
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Theorem 4.2 (char k = 3). Let S := k[x, y]/(x3, yn) with char k = 3 and
n ≥ 3. Then for a linear form ` = x+ y, the Jordan type J`,S is as follows.

J`,S
n ≡ 0 (mod 3) (n, n, n)
n ≡ −1 (mod 3) (n+ 1, n+ 1, n− 2)
n ≡ 1 (mod 3) (n+ 2, n− 1, n− 1)

Proof. Recall that S fails to have the SLP (see Proposition 3.3). Note that
there is no quadratic form Q such that

Q · (x+ y)n−3 = 0.

So J`,S is of the form
J`,S = (λ1, λ2, λ3)

with λ3 ≥ n− 2.
(a) Assume n ≡ 0 (mod 3). Note that

(x+ y)n−1 = x2yn−3 + xyn−2 + yn−1 6= 0,

(x+ y)n = 0.

In other words,

J`,S = (n, n, n).

(b) Let n ≡ 1 (mod 3). Note that

(x+ y)n+1 = x2yn−1 6= 0,

(x+ y)n+2 = 0,

J`,S is of the form
J`,S = (n+ 2, λ2, λ3)

with λ3 ≥ n− 2. Since S does not have the SLP, J`,S cannot be of the form

J`,S = (n+ 2, n, n− 2).

Hence J`,S is of the form

J`,S = (n+ 2, n− 1, n− 1).

(c) Let n ≡ −1 (mod 3). Note that

(x+ y)n = x2yn−2 − xyn−1 6= 0,

(x+ y)n+1 = 0.

Hence J`,S is of the form

J`,S = (n+ 1, λ2, λ3)

with λ3 ≥ n− 2. Since there is no linear form L 6= x+ y such that

L · (x+ y)n−1 6= 0,

L · (x+ y)n = 0,
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J`,S is of the form
J`,S = (n+ 1, > n, n− 1).

So we get that

J`,S = (n+ 1, n+ 1, n− 2).

This completes the proof. �

Theorem 4.3 (char k = p ≥ 5). Let S := k[x, y]/(x3, yn) with char k = p ≥ 5.
For a linear form ` = x + y and for n ≡ 0,±1 (mod p), the Jordan type J`,S
is as follows.

J`,S
n ≡ 0 (mod p) (n, n, n)
n ≡ −1 (mod p) (n+ 1, n+ 1, n− 2)
n ≡ 1 (mod p) (n+ 2, n− 1, n− 1)

Proof. Recall that by Theorem 3.4, S fails to have the SLP for n ≡ 0,±1
(mod p).

(a) Assume n ≡ 0 (mod p). Note that

(x+ y)n−1 = x2yn−3 − xyn−2 + yn−1 6= 0,

(x+ y)n = 0.

In other words,

J`,S = (n, n, n).

(b) Let n ≡ 1 (mod p). Note that

(x+ y)n+1 = x2yn−1 6= 0,

(x+ y)n+2 = 0.

Hence J`,S is of the form

J`,S = (n+ 2, λ2, λ3)

with λ3 ≥ n− 2. Since S fails to have the SLP, J`,S is of the form

J`,S = (n+ 2, n− 1, n− 1).

(c) Let n ≡ −1 (mod p). Note that

(x+ y)n = x2yn−2 − xyn−1 6= 0,

(x+ y)n+1 = 0.

Hence J`,S is of the form

J`,S = (n+ 1, λ2, λ3)

with λ3 ≥ n− 2. Note that there is no linear form L 6= x+ y such that

L · (x+ y)n = 0,

and for Q = 3x2 + 3xy + y2,

y(x+ y)n = x2yn−1 6= 0,
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y(x+ y)n+1 = 0,

Q · (x+ y)n−3 = x2yn−3 − xyn−2 + yn−1 6= 0, and

Q · (x+ y)n−2 = 0.

So

J`,S = (n+ 1, n+ 1, n− 2).

This completes the proof. �

4.2. char k ≥ 2 and m = 4

Theorem 4.4 (char k = 2). Let S = k[x, y]/(x4, yn) with char k = 2 and
n ≥ 4. For a linear form ` = x+ y, the Jordan type J`,S is as follows.

J`,S
n ≡ 0 (mod 4) (n, n, n, n)
n ≡ −1 (mod 4) (n+ 1, n+ 1, n+ 1, n− 3)
n ≡ 2 (mod 4) (n+ 2, n+ 2, n− 2, n− 2)
n ≡ 1 (mod 4) (n+ 3, n− 1, n− 1, n− 1)

Proof. Recall that S fails to have the SLP for n ≥ 4 (see Theorem 3.5). Note
that there is no cubic form C such that

C · (x+ y)n−4 = 0.

Hence the Jordan type J`,S is of the form

J`,S = (λ1, λ2, λ3, λ4)

with λ4 ≥ n− 3.
(a) Let n ≡ 0 (mod 4). Then

(x+ y)n = 0,

and thus the Jordan type J`,S is

J`,S = (n, n, n, n).

(b) Let n ≡ 1. For any linear form L,

L · (x+ y)n+2 = 0.

Moreover, if for a linear form L

L · (x+ y)n+1 = 0,

then L = y, and thus

L · (x+ y)n = L(x+ y)n−1 = 0,

as well. This shows that J`,S is

J`,S = (n+ 3, n− 1, n− 1, n− 1).
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(c) Let n ≡ −1. Then

(x+ y)n = x3yn−3 + x2yn−2 + xyn−1 6= 0,

(x+ y)n+1 = 0.

Since there is no linear form L 6= x+ y such that

L · (x+ y)n = 0.

So the Jordan type J`,S is of the form

J`,S = (n+ 1, n+ 1, λ3, λ4)

with λ4 ≥ n − 3. Moreover, if Q · (x + y)n = 0 for a quadratic form Q, then
x+ y | Q. we get that J`,S is

J`,S = (n+ 1, n+ 1, n+ 1, n− 3).

(d) Let n ≡ 2. Then

(x+ y)n+1 = x3yn−2 + x2yn−1 6= 0,

(x+ y)n+2 = 0.

Since there is no linear form L 6= x+ y such that

L · (x+ y)n+1 = 0.

So the Jordan type J`,S is of the form

J`,S = (n+ 2, n+ 2, λ3, λ4)

with λ4 ≥ n−3. Moreover, since there is no a cubic form C such that x+y - C
and

C · (x+ y)n−3 = 0,

we get that J`,S is

J`,S = (n+ 2, n+ 2, n− 2, n− 2).

This completes the proof. �

Theorem 4.5 (char k = 3). Let S = k[x, y]/(x4, yn) with char k = 3 and
n ≥ 4. For a linear form ` = x + y and for n 6≡ ±4 (mod 9), the Jordan type
J`,S is as follows.

J`,S
n ≡ 0 (mod 9) (n, n, n, n)
n ≡ −1 (mod 9) (n+ 1, n+ 1, n+ 1, n− 3)
n ≡ −2 (mod 9) (n+ 2, n+ 2, n− 1, n− 3)
n ≡ −3 (mod 9) (n+ 3, n, n, n− 3)
n ≡ 1 (mod 9) (n+ 3, n− 1, n− 1, n− 1)
n ≡ 2 (mod 9) (n+ 3, n+ 1, n− 2, n− 2)
n ≡ 3 (mod 9) (n+ 3, n, n, n− 3)
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Proof. Recall that by Theorem 3.6, for n 6≡ ±4 (mod 9), S fails to have the
SLP. Otherwise, S has the SLP. First note that there is no cubic form C such
that

C · (x+ y)n−4 = 0.

So J`,S is of the form
J`,S = (λ1, λ2, λ3, λ4)

with λ4 ≥ n− 3.
(a) Let n ≡ 0 (mod 9). Note that

(x+ y)n−1 = −x3yn−4 + x2yn−3 − xyn−2 + yn−1 6= 0,

(x+ y)n = 0.

In other words,

J`,S = (n, n, n, n).

(b) Let n ≡ 1 (mod 9). Note that

(x+ y)n+2 = x3yn−1 6= 0,

(x+ y)n+3 = 0.

Thus J`,S is of the form

J`,S = (n+ 3, λ2, λ3, λ4)

with λ4 ≥ n− 3. Moreover there is no quadratic form Q such that

Q · (x+ y)n−2 = 0.

So J`,S is of the form
J`,S = (n+ 3, λ2, λ3, λ4)

with λ3 ≥ n− 1 and λ4 ≥ n− 3. Since the sum of the components of J`,S is
4n, the second component of J`,S has to be ≤ n+ 1. But for k = n+ 1, n, and
for some linear form L,

(x+ y)k = xk−n+1yn−1,

we see that L · (x+ y)k = 0 implies that L · (x+ y)k−1 = 0. Hence we conclude
that

J`,S = (n+ 3, n− 1, n− 1, n− 1).

(c) Let n ≡ −1 (mod 9). Note that

(x+ y)n = x2yn−2 − xyn−1 6= 0,

(x+ y)n+1 = 0.

Hence J`,S is of the form

J`,S = (n+ 1,−,−,≥ n− 3).

Note that

x(x+ y)n = nx2yn−1 +
n(n− 1)

2
x3yn−2 6= 0,
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y(x+ y)n =
n(n− 1)

2
x2yn−1 +

n(n− 1)(n− 2)

6
x3yn−2 6= 0,

(x+ 2y)(x+ y)n = n2x2yn−1 +
n(n− 1)(2n− 1)

6
x3yn−2 6= 0,

which implies that there is no linear form L 6= x+ y such that

L · (x+ y)n = 0.

This shows that the Jordan type J`,S has to be of the form

J`,S = (n+ 1, n+ 1, λ3, λ4)

with λ4 ≥ n− 3. Furthermore, it is not hard to show that if for a quadric form
Q

Q · (x+ y)n−1 6= 0, and

Q · (x+ y)n = 0,

then Q = y(x+ y). This implies that the third component of the Jordan type
J`,S has to be ≥ n+ 1, i.e.,

J`,S = (n+ 1, n+ 1, n+ 1, n− 3).

(d) Let n ≡ 2 (mod 9). Note that

(x+ y)n+2 = x3yn−1 6= 0,

(x+ y)n+3 = 0.

Hence the Jordan type J`,S is of the form

J`,S = (n+ 3, λ2, λ3, λ4)

with λ4 ≥ n− 3. Suppose C = ax3 + bx2y + cxy2 + dy3 for some a, b, c, d ∈ k
such that

C · (x+ y)n−4 6= 0, and

C · (x+ y)n−3 = 0.

Then

ax3 · (x+ y)n−3 = ax3yn−3,

bx2y · (x+ y)n−3 = bx2yn−2 + (n− 3)bx3yn−3,

cxy2 · (x+ y)n−3 = cxyn−1 + (n− 3)cx2yn−2 +
(n− 3)(n− 4)

2
cx3yn−3,

dy3 · (x+ y)n−3 = (n− 3)dxyn−1 +
(n− 3)(n− 4)

2
dx2yn−2

+
(n− 3)(n− 4)(n− 5)

6
dx3yn−3.

First, since n ≡ 2 (mod 9), we have n ≡ 2 (mod 3), i.e., n − 3 ≡ 2 (mod 3),
n− 4 ≡ 1 (mod 3), and n− 5 ≡ 0 (mod 3).
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(1) c+ (n− 3)d = 0 implies that c = d.

(2) b+ (n− 3)c+ (n−3)(n−4)
2 d = 0 with c = d, we have that b = 0.

(3) a+ (n−3)b+ (n−3)(n−4)
2 c+ (n−3)(n−4)(n−5)

6 d = 0 with b = 0, and c = d
yield a = 0.

In other words, (x + y) | C = y2(x + y). Thus the last component of the
Jordan type J`,S has to be ≥ n− 2, i.e.,

J`,S = (n+ 3, λ2, λ3, λ4)

with λ4 ≥ n− 2. Moreover, there is no linear form L 6= x+ y such that

L · (x+ y)n = 0.

So J`,S is of the form
J`,S = (n+ 3, λ2, λ3, λ4)

with λ2 ≥ n+ 1 and λ4 ≥ n− 2, i.e.,

J`,S = (n+ 3, n+ 1, n− 2, n− 2).

(e) Let n ≡ −2 (mod 9) and ` = x+ y. Note that

(x+ y)n+1 = −x3yn−2 + x2yn−1 6= 0,

(x+ y)n+2 = 0,

this shows that the Jordan type J`,S is of the form

J`,S = (n+ 2, λ2, λ3, λ4)

with λ4 ≥ n− 3. Furthermore, there is no linear form L 6= x+ y such that

L · (x+ y)n+1 = 0,

and no quadratic form Q such that

Q · (x+ y)n−2 = 0,

we see that J`,S is of the form

J`,S = (n+ 2, λ2, λ3, λ4)

with λ2 ≥ n+ 2, λ3 ≥ n− 1, and λ4 ≥ n− 3, i.e.,

J`,S = (n+ 2, n+ 2, n− 1, n− 3).

(f) Let n ≡ 3 (mod 9). Note that

(x+ y)n+2 = x3yn−1 6= 0,

(x+ y)n+3 = 0, and

there is no quadratic form Q such that

Q · (x+ y)n−1 = 0.

So the Jordan type J`,S is of the form

J`,S = (n+ 3, λ2, λ3, λ4)
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with λ3 ≥ n and λ4 ≥ n− 3, i.e., J`,S has to be

J`,S = (n+ 3, n, n, n− 3).

(g) Let n ≡ −3 (mod 9). Note that

(x+ y)n+2 = −x3yn−1 6= 0,

(x+ y)n+3 = 0,

there is no quadratic form Q such that

Q · (x+ y)n−1 = 0.

So the Jordan type J`,S is of the form

J`,S = (n+ 3, λ2, λ3, λ4)

with λ3 ≥ n and λ4 ≥ n− 3, i.e.,

J`,S = (n+ 3, n, n, n− 3).

This completes the proof. �

Theorem 4.6 (char k ≥ 5 and m = 4). Let S := k[x, y]/(x4, yn) with char k =
p ≥ 5 and n ≥ 4. For a linear form ` = x+ y and for n ≡ 0,±1,±2 (mod p),
S fails to have the SLP, and the Jordan type J`,S is as follows.

J`,S
n ≡ 0 (mod p) (n, n, n, n)
n ≡ −1 (mod p) (n+ 1, n+ 1, n+ 1, n− 3)
n ≡ −2 (mod p) (n+ 2, n+ 2, n− 1, n− 3)
n ≡ 1 (mod p) (n+ 3, n− 1, n− 1, n− 1)
n ≡ 2 (mod p) (n+ 3, n+ 1, n− 2, n− 2)

Proof. Recall that by Theorem 2.5, if n ≡ 0,±1,±2 (mod p), S fails to have
the SLP. Otherwise, S has the SLP (see Theorem 2.1). First, note that there
is no cubic form C such that

C · (x+ y)n−4 = 0.

So the Jordan type is of the form

J`,S = (λ1, λ2, λ3, λ4)

with λ4 ≥ n− 3.
(a) Let n ≡ 0 (mod p). Then

(x+ y)n−1 = −x3yn−4 + x2yn−3 − xyn−2 + yn−1 6= 0, and

(x+ y)n = 0.

So J`,S is of the form

J`,S = (n, n, n, n).
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(b) Let n ≡ 1 (mod p). Note that

(x+ y)n+2 = x3yn−1 6= 0, and

(x+ y)n+3 = 0.

Note that for any linear form L

L · (x+ y)n+2 = 0,

so we have
J`,S = (n+ 3, λ2, λ3, λ4)

with λ2 ≤ n+ 2 and λ4 ≥ n− 3. If for a quadratic form Q

Q · (x+ y)n−2 = 0,

then
Q = xy + y2 = (x+ y)y = ` · y.

So J`,S is of the form

J`,S = (n+ 3, λ2n+ 2, λ3 ≥ n− 1, λ4 ≥ n− 3).

But the second component n+2 of J`,S is not possible. Moreover, since S does
not have the SLP, J`,S is not of the form

J`,S = (n+ 3, n+ 1, n− 1, n− 3).

Furthermore, there is no linear form L 6= x+ y such that

L · (x+ y)n−1 6= 0,

L · (x+ y)n = 0,

and thus J`,S is of the form

J`,S = (n+ 3, λ2, λ3, λ4)

with λ2 ≤ n− 1, λ3 ≥ n− 1, and λ4 ≥ n− 3, i.e., J`,S is of the form

J`,S = (n+ 3, n− 1, n− 1, n− 1).

(c) Let n ≡ 2 (mod p). Note that

(x+ y)n+2 = 4x3yn−1 6= 0, and

(x+ y)n+3 = 0.

Note that for any linear form L

L · (x+ y)n+2 = 0.

So
J`,S = (n+ 3, λ2, λ3, λ4)

with λ2 ≤ n+ 2 and λ4 ≥ n− 3. If for a cubic form C

C · (x+ y)n−3 = 0,

then
C = y2 · (x+ y) = y2 · `.
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This implies that

J`,S = (n+ 3, λ2, λ3, λ4)

with λ2 ≤ n+ 2 and λ4 ≥ n− 2 and so

J`,S = (n+ 3, λ2, λ3, λ4)

with λ2 ≤ n+ 1 and λ4 ≥ n− 2. Since there is no linear form L 6= x+ y such
that

L · (x+ y)n = 0,

J`,S is of the form

J`,S = (n+ 3, n+ 1, λ3, λ4)

with λ4 ≥ n− 2, i.e.,

J`,S = (n+ 3, n+ 1, n− 2, n− 2).

(d) Let n ≡ −1 (mod p). Note that

(x+ y)n = −x3yn−3 + x2yn−2 − xyn−1 6= 0, and

(x+ y)n+1 = 0.

So

J`,S = (n+ 1, λ2, λ3, λ4)

with λ4 ≥ n−3. Furthermore there is no quadratic form Q such that (x+y) - Q
and

Q · (x+ y)n = 0,

so,

J`,S = (n+ 1, λ2, λ3, λ4)

with λ3 ≥ n+ 1 and λ4 ≥ n− 3, i.e.,

J`,S = (n+ 1, n+ 1, n+ 1, n− 3).

(e) Let n ≡ −2 (mod p). Note that

(x+ y)n+1 = −x3yn−2 + x2yn−1 6= 0, and

(x+ y)n+2 = 0.

So J`,S is of the form

J`,S = (n+ 2, λ2, λ3, λ4)

with λ4 ≥ n − 3. Now consider a quadratic form Q = ax2 + bxy + xy2 with
a, b, c ∈ k such that

Q(x+ y)n−2 = 0.

Note that

(x+ y)n−2 = yn−1 + (n− 2)xyn−3 +
(n− 2)(n− 3)

2
x2yn−4

+
(n− 2)(n− 3)(n− 4)

6
x3yn−5.
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This implies that

ax2(x+ y)n−2 = ax2yn−2 + (n− 2)ax3yn−3,

bxy(x+ y)n−2 = bxyn−1 + (n− 2)bx2yn−2 +
(n− 2)(n− 3)

2
bx3yn−3,

cy2(x+ y)n−2 = (n− 2)cxyn−1 +
(n− 2)(n− 3)

2
cx2yn−2

+
(n− 2)(n− 3)(n− 4)

6
cx3yn−3.

Moreover, Q(x+ y)n−2 = 0 yields

b+ (n− 2)c = 0 if and only if b = 4c,

a+ (n− 2)b+ (n−2)(n−3)
2 c = 0 if and only if a = 6c.

Hence we may take that a = 6, b = 4, and c = 1. But,

(n− 2)a+
(n− 2)(n− 3)

2
b+

(n− 2)(n− 3)(n− 4)

6
c

= (n− 2) · 6 +
(n− 2)(n− 3)

2
· 4 +

(n− 2)(n− 3)(n− 4)

6
6= 0,

which follows that there is no quadratic form Q such that

Q · (x+ y)n−2 = 0.

In other words, J`,S is of the form

J`,S = (n+ 2, , λ2, λ3, λ4)

with λ3 ≥ n − 1 and λ4 ≥ n − 3. Note that there is no linear form L 6= x + y
such that

L · (x+ y)n+1 = 0.

So the Jordan type J`,S is of the form

J`,S = (n+ 2, λ2, λ3, λ4)

with λ2 ≥ n+ 2, λ3 ≥ n− 1, and λ4 ≥ n− 3, i.e.,

J`,S = (n+ 2, n+ 2, n− 1, n− 3).

This completes the proof of Theorem 4.6. �

Remark 4.7. We found a general formula for characteristic p ≥ 2m − 3, but
not for low characteristic p < 2m − 3, which were discussed individually in
Sections 3 and 4. It has been explored when S = k[x, y]/(xm, yn) has the SLP
using a different language ‘representation theory’ for m ≤ n and m = 3, 4 in
[3]. As we mentioned in the introduction, there is a recursive formula how to
find the Jordan type for S [10]. However, not much is known about the Jordan
type of S = k[x1, . . . , xr]/(x

m1
1 , . . . , xmr

r ) for r ≥ 3 over a field k of a prime
characteristic p smaller than the socle degree j = (

∑
imi) − r, except for the

strong Lefschetz case treated in [2] and completed in [13].
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