DOI QR코드

DOI QR Code

EMI based multi-bolt looseness detection using series/parallel multi-sensing technique

  • Chen, Dongdong (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology) ;
  • Huo, Linsheng (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology) ;
  • Song, Gangbing (Smart Materials and Structures Laboratory, Department of Mechanical Engineering, University of Houston)
  • Received : 2019.04.29
  • Accepted : 2019.11.08
  • Published : 2020.04.25

Abstract

In this paper, a novel but practical approach named series/parallel multi-sensing technique was proposed to evaluate the bolt looseness in a bolt group. The smart washers (SWs), which were fabricated by embedding a Lead Zirconate Titanate (PZT) transducer into two flat metal rings, were installed to the bolts group. By series connection of SWs, the impedance signals of different bolts can be obtained through only one sweep. Therefore, once the loosening occurred, the shift of different peak frequencies can be used to locate which bolt has loosened. The proposed multi input single output (MISO) damage detection scheme is very suitable for the structural health monitoring (SHM) of joint with a large number of bolts connection. Another notable contribution of this paper is the proposal of 3-dB bandwidth root mean square deviation (3 dB-RMSD) which can quantitatively evaluate the severity of bolt looseness. Compared with the traditional naked-eye observation method, the equivalent circuit based 3-dB bandwidth can accurately define the calculation range of RMSD. An experiment with three bolted connection specimens that installed the SWs was carried out to validate our proposed approach. Experimental result shows that the proposed 3 dB-RMSD based multi-sensing technique can not only identify the loosened bolt but also monitor the severity of bolt looseness.

Keywords

Acknowledgement

This work was supported by the Major State Basic Research Development Program of China (973 Program, grant number 2015CB057704). The authors would like to thank for the financial supports.

References

  1. Amerini, F. and Meo, M. (2011), "Structural health monitoring of bolted joints using linear and nonlinear acoustic/ultrasound methods", Struct. Health Monit., 10(6), 659-672. https://doi.org/10.1177/1475921710395810
  2. Annamdas, V.G. and Radhika, M.A. (2013), "Electromechanical impedance of piezoelectric transducers for monitoring metallic and non-metallic structures: A review of wired, wireless and energy-harvesting methods", J. Intell. Mater. Syst. Struct., 24(9), 1021-1042. https://doi.org/10.1177/1045389X13481254
  3. Ayres, J.W., Lalande, F., Chaudhry, Z. and Rogers, C.A. (1998), "Qualitative impedance-based health monitoring of civil infrastructures", Smart Mater. Struct., 7(5), 599. https://doi.org/10.1088/0964-1726/7/5/004
  4. Bhalla, S. and Soh, C.K. (2004a), "Structural health monitoring by piezo-impedance transducers. I: Modeling", J. Aerospace Eng., 17(4), 154-165. https://doi.org/10.1061/(ASCE)0893-1321(2004)17:4(154)
  5. Bhalla, S. and Soh, C.K. (2004b), "Structural health monitoring by piezo-impedance transducers. II: applications", J. Aerosp. Eng., 17(4), 166-175. https://doi.org/10.1061/(ASCE)0893-1321(2004)17:4(166)
  6. Caccese, V., Mewer, R. and Vel, S.S. (2004), "Detection of bolt load loss in hybrid composite/metal bolted connections", Eng. Struct., 26(7), 895-906. https://doi.org/10.1016/j.engstruct.2004.02.008
  7. Chen, B., Hei, C., Luo, M.Z., Ho, M.S.C. and Song, G.B. (2018a), "Pipeline two-dimensional impact location determination using time of arrival with instant phase (TOAIP) with piezoceramic transducer array", Smart Mater. Struct., 27(10). https://doi.org/10.1088/1361-665X/aadaa9
  8. Chen, D.D., Huo, L.S., Li, H.N. and Song, G.B. (2018b), "A Fiber Bragg Grating (FBG)-Enabled Smart Washer for Bolt Pre-Load Measurement: Design, Analysis, Calibration, and Experimental Validation", Sensors, 18(8). https://doi.org/10.3390/s18082586
  9. Di, B., Wang, J., Li, H., Zheng, J., Zheng, Y. and Song, G. (2019), "Investigation of bonding behavior of FRP and steel bars in selfcompacting concrete structures using acoustic emission method", Sensors, 19(1), 159. https://doi.org/10.3390/s19010159
  10. Ewere, F. and Wang, G. (2014), "Performance of galloping piezoelectric energy harvesters", J. Intell. Mater. Syst. Struct., 25(14), 1693-1704. https://doi.org/10.1177/1045389X13505251
  11. Ewere, F., Wang, G. and Cain, B. (2014), "Experimental investigation of galloping piezoelectric energy harvesters with square bluff bodies", Smart Mater. Struct., 23(10), 104012. https://doi.org/10.1088/0964-1726/23/10/104012
  12. Fan, X., Li, J. and Hao, H. (2018a), "Impedance resonant frequency sensitivity based structural damage identification with sparse regularization: experimental studies", Smart Mater. Struct., 28(1), 015003. https://doi.org/10.1088/1361-665X/aaeb7a
  13. Fan, X., Li, J., Hao, H. and Ma, S. (2018b), "Identification of minor structural damage based on electromechanical impedance sensitivity and sparse regularization", J. Aerosp. Eng., 31(5), 04018061. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000892
  14. Fierro, G.P.M. and Meo, M. (2018), "IWSHM 2017: Structural health monitoring of the loosening in a multi-bolt structure using linear and modulated nonlinear ultrasound acoustic moments approach", Struct. Health Monit., 17(6), 1349-1364. https://doi.org/10.1177/1475921718806141
  15. Giurgiutiu, V. and Zagrai, A.N. (2000), "Characterization of piezoelectric wafer active sensors", J. Intell. Mater. Syst. Struct., 11(12), 959-976. https://doi.org/10.1106/A1HU-23JD-M5AU-ENGW
  16. Giurgiutiu, V. and Zagrai, A.N. (2002), "Embedded self-sensing piezoelectric active sensors for on-line structural identification", J. Vib. Acoust., 124(1), 116-125. https://doi.org/10.1115/1.1421056
  17. Guan, M. and Liao, W.H. (2004), "Studies on the circuit models of piezoelectric ceramics", Proceedings of the IEEE International Conference on Information Acquisition, Hefei, China, June.
  18. Hey, F., Bhalla, S. and Soh, C.K. (2006), "Optimized parallel interrogation and protection of piezo-transducers in electromechanical impedance technique", J. Intell. Mater. Syst. Struct., 17(6), 457-468. https://doi.org/10.1177/1045389X06058792
  19. Huo, L., Chen, D., Kong, Q., Li, H. and Song, G. (2017a), "Smart washer-a piezoceramic-based transducer to monitor looseness of bolted connection", Smart Mater. Struct., 26(2), 025033. https://doi.org/10.1088/1361-665X/26/2/025033
  20. Huo, L., Chen, D., Liang, Y., Li, H., Feng, X. and Song, G. (2017b), "Impedance based bolt pre-load monitoring using piezoceramic smart washer", Smart Mater. Struct., 26(5), 057004. https://doi.org/10.1088/1361-665X/aa6a8e
  21. Huo, L., Wang, F., Li, H. and Song, G. (2017c), "A fractal contact theory based model for bolted connection looseness monitoring using piezoceramic transducers", Smart Mater. Struct., 26(10), 104010. https://doi.org/10.1088/0964-1726/26/10/104010
  22. Huo, L., Li, C., Jiang, T. and Li, H.N. (2018), "Feasibility study of steel bar corrosion monitoring using a piezoceramic transducer enabled time reversal method", Appl. Sci., 8(11), 2304. https://doi.org/10.3390/app8112304
  23. Huynh, T.C. and Kim, J.T. (2017), "Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique", Smart Struct. Syst., Int. J., 20(2), 181-195. https://doi.org/10.1088/1361-665X/aa6e93
  24. Ihn, J.B. and Chang, F.K. (2008), "Pitch-catch active sensing methods in structural health monitoring for aircraft structures", Struct. Health Monit., 7(1), 5-19. https://doi.org/10.1177/1475921707081979
  25. Jaffe, B. Cook, Jr. W.R. and Jaffe, H. (2012), Piezoelectric Ceramics, Academic Press Inc., Berkeley Square, London, UK.
  26. Ji, Q., Ho, M., Zheng, R., Ding, Z. and Song, G. (2015), "An exploratory study of stress wave communication in concrete structures", Smart Struct. Syst., Int. J., 15(1), 135-150. https://doi.org/10.12989/sss.2015.15.1.135
  27. Jiang, T., Kong, Q., Patil, D., Luo, Z., Huo, L. and Song, G. (2017), "Detection of debonding between fiber reinforced polymer bar and concrete structure using piezoceramic transducers and wavelet packet analysis", IEEE Sensors J., 17(7), 1992-1998. https://doi.org/10.1109/jsen.2017.2660301
  28. Jiang, T.Y., Zhang, Y.W., Wang, L., Zhang, L. and Song, G.B. (2018), "Monitoring Fatigue Damage of Modular Bridge Expansion Joints Using Piezoceramic Transducers", Sensors, 18(11). https://doi.org/10.3390/s18113973
  29. Karayannis, C.G., Voutetaki, M.E., Chalioris, C.E., Providakis, C.P. and Angeli, G.M. (2015), "Detection of flexural damage stages for RC beams using Piezoelectric sensors (PZT)", Smart Struct. Syst., Int. J., 15(4), 997-1018. https://doi.org/10.12989/sss.2015.15.4.997
  30. Khomenko, A., Koricho, E.G., Haq, M. and Cloud, G.L. (2015), "Bolt tension monitoring with reusable fiber Bragg-grating sensors", J. Strain Anal. Eng. Des., 51(2), 101-108. https://doi.org/10.1177/0309324715598265
  31. Kim, J., Grisso, B.L., Kim, J.K., Ha, D.S. and Inman, D.J. (2008), "Electrical modeling of piezoelectric ceramics for analysis and evaluation of sensory systems", Proceedings of the IEEE Sensors Applications Symposium, Atlanta, GA, USA, February.
  32. Kong, Q., Zhu, J., Ho, M. and Song, G. (2018), "Tapping and Listening: a New Approach to Bolt Looseness Monitoring", Smart Mater. Struct., 27(7), 07LT02. https://doi.org/10.1088/1361-665X/aac962
  33. Li, W., Fan, S., Ho, S.C.M., Wu, J. and Song, G. (2018), "Interfacial debonding detection in fiber-reinforced polymer rebar-reinforced concrete using electro-mechanical impedance technique", Struct. Health Monit., 17(3), 461-471. https://doi.org/10.1177/1475921716678922
  34. Li, W., Liu, T., Zou, D., Wang, J., and Yi, T.H. (2019), "PZT based smart corrosion coupon using electromechanical impedance", Mech. Syst. Signal Pr., 129, 455-469. https://doi.org/10.1016/j.ymssp.2019.04.049
  35. Liang, C., Sun, F. and Rogers, C. (1997), "Coupled electromechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer", J. Intell. Mater. Syst. Struct., 8(4), 335-343. https://doi.org/10.1177/1045389X9700800406
  36. Lim, Y.Y., Bhalla, S. and Soh, C.K. (2006), "Structural identification and damage diagnosis using self sensing piezoimpedance transducers", Smart Mater. Struct., 15(4), 987. https://doi.org/10.1088/0964-1726/15/4/012
  37. Liu, T., Huang, Y., Zou, D., Teng, J. and Li, B. (2013), "Exploratory study on water seepage monitoring of concrete structures using piezoceramic based smart aggregates", Smart Mater. Struct., 22(6), 065002. https://doi.org/10.1088/0964-1726/22/6/065002
  38. Liu, T., Zou, D., Du, C. and Wang, Y. (2017), "Influence of axial loads on the health monitoring of concrete structures using embedded piezoelectric transducers", Struct. Health Monit., 16(2), 202-214. https://doi.org/10.1177/1475921716670573
  39. Lu, G.T., Li, Y.R., Zhou, M.L., Feng, Q. and Song, G.B. (2018), "Detecting Damage Size and Shape in a Plate Structure Using PZT Transducer Array", J. Aerosp. Eng., 31(5), 04018075. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000904
  40. Mascarenas, D.D., Park, G. and Farrar, C.R. (2005), "Monitoring of bolt preload using piezoelectric active devices", Proceedings of SPIE - The International Society for Optical Engineering, San Diego, CA, USA, May.
  41. Mascarenas, D.L., Todd, M.D., Park, G. and Farrar, C.R. (2007), "Development of an impedance-based wireless sensor node for structural health monitoring", Smart Mater. Struct., 16(6), 2137. https://doi.org/10.1088/0964-1726/16/6/016
  42. Na, W.S. (2017), "Possibility of Detecting Wall Thickness Loss using a PZT based Structural Health Monitoring Method for Metal Based Pipeline Facilities", NDT&E Int., 88, 42-50. https://doi.org/10.1016/j.ndteint.2017.03.001
  43. Na, S. and Lee, H.K. (2013), "A multi-sensing electromechanical impedance method for non-destructive evaluation of metallic structures", Smart Mater. Struct., 22(9), 095011. https://doi.org/10.1088/0964-1726/22/9/095011
  44. Negi, P., Chakraborty, T., Kaur, N. and Bhalla, S. (2018), "Investigations on effectiveness of embedded PZT patches at varying orientations for monitoring concrete hydration using EMI technique", Constr. Build. Mater., 169, 489-498. https://doi.org/10.1016/j.conbuildmat.2018.03.006
  45. Park, G. and Inman, D.J. (2006), "Structural health monitoring using piezoelectric impedance measurements", Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 373-392. https://doi.org/10.1098/rsta.2006.1934
  46. Park, G., Kabeya, K., Cudney, H.H. and Inman, D.J. (1999), "Impedance-based structural health monitoring for temperature varying applications", JSME Int. J. Series A Solid Mech. Mater. Eng., 42(2), 249-258. https://doi.org/10.1299/jsmea.42.249
  47. Park, G., Cudney, H.H. and Inman, D.J. (2001), "Feasibility of using impedance-based damage assessment for pipeline structures", Earthq. Eng. Struct. Dyn., 30(10), 1463-1474. https://doi.org/10.1002/eqe.72
  48. Park, S., Yun, C.B., Roh, Y. and Lee, J. (2005), "Health monitoring of steel structures using impedance of thickness modes at PZT patches", Smart Struct. Syst., Int. J., 1(4), 339-353. https://doi.org/10.12989/sss.2005.1.4.339
  49. Park, H.W., Sohn, H., Law, K.H. and Farrar, C.R. (2007), "Time reversal active sensing for health monitoring of a composite plate", J. Sound Vib., 302(1-2), 50-66. https://doi.org/10.1016/j.jsv.2006.10.044
  50. Peng, J., Xiao, L., Zhang, J., Cai, C.S. and Wang, L. (2019), "Flexural behavior of corroded HPS beams", Eng. Struct., 195, 274-287. https://doi.org/10.1016/j.engstruct.2019.06.006
  51. Priya, C.B., Saravanan, T.J., Balamonica, K., Gopalakrishnan, N. and Rao, A.R.M. (2018), "EMI based monitoring of early-age characteristics of concrete and comparison of serial/parallel multi-sensing technique", Constr. Build. Mater., 191, 1268-1284. https://doi.org/10.1016/j.conbuildmat.2018.10.079
  52. Razi, P., Esmaeel, R.A. and Taheri, F. (2013), "Improvement of a vibration-based damage detection approach for health monitoring of bolted flange joints in pipelines", Struct. Health Monit., 12(3), 207-224. https://doi.org/10.1177/1475921713479641
  53. Ren, L., Feng, T.Z., Ho, M., Jiang, T. and Song, G.B. (2018), "A smart "shear sensing" bolt based on FBG sensors", Measurement, 122, 240-246. https://doi.org/10.1016/j.measurement.2018.03.026
  54. Ritdumrongkul, S., Abe, M., Fujino, Y. and Miyashita, T. (2003), "Quantitative health monitoring of bolted joints using a piezoceramic actuator-sensor", Smart Mater. Struct., 13(1), 20. https://doi.org/10.1088/0964-1726/13/1/003
  55. Ruan, J., Zhang, Z., Wang, T., Li, Y. and Song, G. (2015), "An anti-noise real-time cross-correlation method for bolted joint monitoring using piezoceramic transducers", Smart Struct. Syst., Int. J., 16(2), 281-294. https://doi.org/10.12989/sss.2015.16.2.281
  56. Shao, J., Wang, T., Yin, H., Yang, D. and Li, Y. (2016), "Bolt looseness detection based on piezoelectric impedance frequency shift", Appl. Sci., 6(10), 298. https://doi.org/10.3390/app6100298
  57. Sherrit, S., Wiederick, H. and Mukherjee, B. (1997), "Accurate equivalent circuits for unloaded piezoelectric resonators", Proceedings of the IEEE Ultrasonics Symposium, Toronto, Canada, October.
  58. Siu, S., Ji, Q., Wu, W., Song, G. and Ding, Z. (2014a), "Stress wave communication in concrete: I. Characterization of a smart aggregate based concrete channel", Smart Mater. Struct., 23(12), 125030. https://doi.org/10.1088/0964-1726/23/12/125030
  59. Siu, S., Qing, J., Wang, K., Song, G. and Ding, Z. (2014b), "Stress wave communication in concrete: II. Evaluation of low voltage concrete stress wave communications utilizing spectrally efficient modulation schemes with PZT transducers", Smart Mater. Struct., 23(12), 125031. https://doi.org/10.1088/0964-1726/23/12/125031
  60. Sodano, H.A., Inman, D.J. and Park, G. (2005), "Comparison of piezoelectric energy harvesting devices for recharging batteries", J. Intell. Mater. Syst. Struct., 16(10), 799-807. https://doi.org/10.1177/1045389X05056681
  61. Soh, C.K., Tseng, K.K., Bhalla, S. and Gupta, A. (2000), "Performance of smart piezoceramic patches in health monitoring of a RC bridge", Smart Mater. Struct., 9(4), 533. https://doi.org/10.1088/0964-1726/9/4/317
  62. Sohn, H., Park, G., Wait, J.R., Limback, N.P. and Farrar, C.R. (2003), "Wavelet-based active sensing for delamination detection in composite structures", Smart Mater. Struct., 13(1), 153. https://doi.org/10.1088/0964-1726/13/1/017
  63. Song, G., Gu, H., Mo, Y., Hsu, T. and Dhonde, H. (2007), "Concrete structural health monitoring using embedded piezoceramic transducers", Smart Mater. Struct., 16(4), 959. https://doi.org/10.1088/0964-1726/16/4/003
  64. Song, G., Li, H., Gajic, B., Zhou, W., Chen, P. and Gu, H. (2013), "Wind turbine blade health monitoring with piezoceramic-based wireless sensor network", Int. J. Smart Nano Mater., 4(3), 150-166. https://doi.org/10.1080/19475411.2013.836577
  65. Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society (1987), IEEE Standard on Piezoelectricity, The Institute of Electrical and Electronics Engineers, New York, NY, USA.
  66. Suda, M., Hasuo, Y., Kanaya, A., Ogura, Y., Takishita, T. and Suzuki, Y. (2008), "Development of Ultrasonic Axial Bolting Force Inspection System for Turbine Bolts in Thermal Power Plants", Int. J. Ser Solid Mech. Strength Mater., 35(2), 216-219. https://doi.org/10.1299/jsmea1988.35.2_216
  67. Sun, F.P., Chaudhry, Z., Liang, C. and Rogers, C. (1995), "Truss structure integrity identification using PZT sensor-actuator", J. Intell. Mater. Syst. Struct., 6(1), 134-139. https://doi.org/10.1177/1045389X9500600117
  68. Tawie, R., Lee, H. and Park, S. (2010), "Non-destructive evaluation of concrete quality using PZT transducers", Smart Struct. Syst., Int. J., 6(7), 851-866. https://doi.org/10.12989/sss.2010.6.7.851
  69. Wang, D. and Zhu, H. (2011), "Monitoring of the strength gain of concrete using embedded PZT impedance transducer", Constr. Build. Mater., 25(9), 3703-3708. https://doi.org/10.1016/j.conbuildmat.2011.04.020
  70. Wang, T., Song, G., Liu, S., Li, Y. and Xiao, H. (2013a), "Review of Bolted Connection Monitoring", Int. J. Distrib. Sensor N. https://doi.org/10.1155/2013/871213
  71. Wang, T., Song, G., Wang, Z. and Li, Y. (2013b), "Proof-ofconcept study of monitoring bolt connection status using a piezoelectric based active sensing method", Smart Mater. Struct., 22(8), 087001. https://doi.org/10.1088/0964-1726/22/8/087001
  72. Wang, J., Shi, Z., Xiang, H. and Song, G. (2015), "Modeling on energy harvesting from a railway system using piezoelectric transducers", Smart Mater. Struct., 24(10), 105017. https://doi.org/10.1088/0964-1726/24/10/105017
  73. Wang, F., Ho, S.C.M. and Song, G. (2019), "Modeling and analysis of an impact-acoustic method for bolt looseness identification", Mech. Syst. Signal Pr., 133, 106249. https://doi.org/10.1016/j.ymssp.2019.106249
  74. Wu, A., He, S., Ren, Y., Wang, N., Ho, S.C.M. and Song, G. (2019), "Design of a new stress wave-based pulse position modulation (PPM) communication system with piezoceramic transducers", Sensors, 19(3), 558. https://doi.org/10.3390/s19030558
  75. Xu, Y., Luo, M., Hei, C. and Song, G. (2018), "Quantitative evaluation of compactness of concrete-filled fiber-reinforced polymer tubes using piezoceramic transducers and time difference of arrival", Smart Mater. Struct., 27(3), 035023. https://doi.org/10.1088/1361-665X/aa9dd0
  76. Yang, J. and Chang, F.K. (2006a), "Detection of bolt loosening in C-C composite thermal protection panels: I. Diagnostic principle", Smart Mater. Struct., 15(2), 581. https://doi.org/10.1088/0964-1726/15/2/041
  77. Yang, J. and Chang, F.K. (2006b), "Detection of bolt loosening in C-C composite thermal protection panels: II. Experimental verification", Smart Mater. Struct., 15(2), 591. https://doi.org/10.1088/0964-1726/15/2/042
  78. Yang, Y., Liu, H. and Annamdas, V.G.M. (2009), "Wireless sensing using piezo-ceramic transducers for structural health monitoring", Proceedings of International Society for Optics and Photonics - Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace System, San Diego, CA, USA, April.
  79. Yang, Y., Liu, H. and Annamdas, V.G.M. (2010), "Parallel and individual interrogations of piezo-impedance transducers for damage detection", Mater. Manuf. Processes, 25(4), 249-254. https://doi.org/10.1080/10426910903426398
  80. Yasui, H. and Kawashima, K. (2000), "Acoustoelastic Measurement of Bolt Axial Load with Hypothetical Velocity Ratio Method", Transact. Japan Soc. Mech. Engr., 66(642), 390-396. https://doi.org/10.1299/kikaia.66.390
  81. Yin, H., Wang, T., Yang, D., Liu, S., Shao, J. and Li, Y. (2016), "A smart washer for bolt looseness monitoring based on piezoelectric active sensing method", Appl. Sci., 6(11), 320. https://doi.org/10.3390/app6110320
  82. Yuan, R., Lv, Y., Kong, Q. and Song, G. (2019), "Percussion-based bolt looseness monitoring using intrinsic multiscale entropy analysis and BP neural network", Smart Mater. Struct., 28, 125001. https://doi.org/10.1088/1361-665X/ab3b39
  83. Zadoks, R.I. and Yu, X. (1997), "An investigation of the selfloosening behavior of bolts under transverse vibration", J. Sound Vib., 208(2), 189-209. https://doi.org/10.1006/jsvi.1997.1173
  84. Zagrai, A.N. and Giurgiutiu, V. (2001), "Electro-mechanical impedance method for crack detection in thin plates", J. Intell. Mater. Syst. Struct., 12(10), 709-718. https://doi.org/10.1177/104538901320560355
  85. Zheng, Y., Chen, D., Zhou, L., Huo, L., Ma, H. and Song, G. (2018), "Evaluation of the effect of fly ash on hydration characterization in self-compacting concrete (SCC) at very early ages using piezoceramic transducers", Sensors, 18(8), 2489. https://doi.org/10.3390/s18082489
  86. Zhou, D., Ha, D.S. and Inman, D.J. (2010), "Ultra low-power active wireless sensor for structural health monitoring", Smart Struct. Syst., Int. J., 6(5-6), 675-687. https://doi.org/10.12989/sss.2010.6.5_6.675

Cited by

  1. Understanding Impedance Response Characteristics of a Piezoelectric-Based Smart Interface Subjected to Functional Degradations vol.2021, 2020, https://doi.org/10.1155/2021/5728679
  2. Monitoring corrosion-induced thickness loss of stainless steel plates using the electromechanical impedance technique vol.32, pp.2, 2020, https://doi.org/10.1088/1361-6501/abbb67
  3. Monitoring of viscous damper fluid viscosity using piezoceramic transducers-a feasibility study vol.30, pp.2, 2021, https://doi.org/10.1088/1361-665x/abd83b
  4. Attenuation characteristics of stress wave in cracked concrete beam using smart aggregate transducers enabled time-reversal technique vol.32, pp.4, 2021, https://doi.org/10.1177/1045389x20953619
  5. Actuating Performance Analysis of a New Smart Aggregate Using Piezoceramic Stack vol.11, pp.20, 2021, https://doi.org/10.3390/app11209599