DOI QR코드

DOI QR Code

BINARY TRUNCATED MOMENT PROBLEMS AND THE HADAMARD PRODUCT

  • Yoo, Seonguk (Department of Mathematics Education and RINS, Gyeongsang National University)
  • 투고 : 2019.09.16
  • 심사 : 2020.01.07
  • 발행 : 2020.01.31

초록

Up to the present day, the best solution we can get to the truncated moment problem (TMP) is probably the Flat Extension Theorem. It says that if the corresponding moment matrix of a moment sequence admits a rank-preserving positive extension, then the sequence has a representing measure. However, constructing a flat extension for most higher-order moment sequences cannot be executed easily because it requires to allow many parameters. Recently, the author has considered various decompositions of a moment matrix to find a solution to TMP instead of an extension. Using a new approach with the Hadamard product, the author would like to introduce more techniques related to moment matrix decompositions.

키워드

참고문헌

  1. C. Bayer and J. Teichmann, The proof of Tchakaloff 's Theorem, Proc. Amer. Math. Soc. 134 (2006), 3035-3040. https://doi.org/10.1090/S0002-9939-06-08249-9
  2. C. Berg and A. J. Duran, A transformation from Hausdorff to Stieltjes moment sequences, Ark. Mat. 42 (2004), no. 2, 239-257. https://doi.org/10.1007/BF02385478
  3. R. Curto and L. Fialkow, Solution of the truncated complex moment problem for flat data, Mem. Amer. Math. Soc. 119 (1996), no. 568, x+52 pp.
  4. R. Curto and L. Fialkow, Flat extensions of positive moment matrices: relations in analytic or conjugate terms, Nonselfadjoint operator algebras, operator theory, and related topics, 59-82, Oper. Theory Adv. Appl., 104, Birkhauser, Basel, 1998.
  5. R. Curto and L. Fialkow, Flat extensions of positive moment matrices: recursively generated relations, Mem. Amer. Math. Soc. 136 (1998), no. 648, x+56 pp.
  6. R. Curto and L. Fialkow, Solution of the singular quartic moment problem, J. Operator Theory 48 (2002), 315-354.
  7. R. Curto, L. Fialkow and H.M. Moller, The extremal truncated moment problem, Integral Equations Operator Theory 60 (2008), 177-200. https://doi.org/10.1007/s00020-008-1557-x
  8. R. Curto and L. Fialkow, An analogue of the Riesz-Haviland theorem for the truncated moment problem, J. Funct. Anal. 255 (2008), no. 10, 2709-2731. https://doi.org/10.1016/j.jfa.2008.09.003
  9. R. Curto and S. Yoo, Cubic column relations in truncated moment problems, J. Funct. Anal. 266 (2014), no. 3, 1611-1626. https://doi.org/10.1016/j.jfa.2013.11.024
  10. R. Curto and S. Yoo, Non-extremal sextic moment problems, J. Funct. Anal. 269 (2015), no. 3, 758-780. https://doi.org/10.1016/j.jfa.2015.04.014
  11. R. Curto and S. Yoo, Concrete solution to the nonsingular quartic binary moment problem, Proc. Amer. Math. Soc. 144 (2016), no. 1, 249-258. https://doi.org/10.1090/proc/12698
  12. L. Fialkow, Solution of the truncated moment problem with variety $y=x^3$, Trans. Amer. Math. Soc. 363 (2011), 3133-3165 https://doi.org/10.1090/S0002-9947-2011-05262-1
  13. L. Fialkow and J. Nie, Positivity of Riesz functionals and solutions of quadratic and quartic moment problems, J. Funct. Anal. 258 (2010), 328-356. https://doi.org/10.1016/j.jfa.2009.09.015
  14. R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, New York, NY, 2nd edition, 2012. 662 pp.
  15. M. Putinar and K. Schmudgen, Multivariate determinateness, Indiana Univ. Math. J. 57 (2008), 2931-2968. https://doi.org/10.1512/iumj.2008.57.3692
  16. J. A. Shohat and J. D. Tamarkin, The Problem of Moments, American Mathematical Society Mathematical surveys, vol. I. American Mathematical Society, New York, 1943.
  17. J.L. Smul'jan, An operator Hellinger integral (Russian), Mat. Sb. 91 (1959), 381-430.
  18. Wolfram Research, Inc., Mathematica, Version 11.0.1.0, Champaign, IL, 2016.
  19. F. Zhang, Matrix Theory: Basic Results and Techniques, 2nd edition, Springer, New York, NY, 2011. 420 pp.