DOI QR코드

DOI QR Code

Chemical Components, Antitermite and Antifungal Activities of Cinnamomum parthenoxylon Wood Vinegar

  • ADFA, Morina (Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Bengkulu) ;
  • ROMAYASA, Ari (Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Bengkulu) ;
  • KUSNANDA, Arif Juliari (Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Bengkulu) ;
  • AVIDLYANDI, Avidlyandi (Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Bengkulu) ;
  • YUDHA S., Salprima (Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Bengkulu) ;
  • BANON, Charles (Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Bengkulu) ;
  • GUSTIAN, Irfan (Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Bengkulu)
  • Received : 2019.11.17
  • Accepted : 2020.01.16
  • Published : 2020.01.25

Abstract

Termiticidal and fungicidal activities of wood vinegar from Cinnamomum parthenoxylon (CP) stem wood have been evaluated against Coptotermes curvignathus and wood rotting fungi (Schizophyllum commune and Fomitopsis palustris). The utilized CP wood vinegar was produced in the operating temperature range 250-300℃ pyrolysis. A no-choice test was applied for evaluating termiticidal activity with 33 active termites and antifungal activity using the agar media assay. The result showed that an increase in the concentrations of CP wood vinegar significantly raised the mortality of termite. CP wood vinegar showed high termiticidal activity, organic acids (acetic acid 42.91%, 3-butenoic acid 6.89%, butanoic acid, 2-propenyl ester 2.26%), and ketones (1-hydroxy-2-propanone 5.14%, 3-methylcyclopentane-1,2-dione 2.34%) might be largely contributed to termiticidal activity in addition to other minor components. Furthermore, CP wood vinegar exhibited significant inhibition of fungal growth. These data showed that CP wood vinegar was more toxic to white-rot fungi (S. commune) than brown-rot (F. palustris). The results suggested that phenolic compounds from lignin degradation were responsible for good antifungal activity.

Keywords

References

  1. Adfa, M., Hattori, Y., Yoshimura, T., Koketsu, M. 2012. Antitermite activity of 7-alkoxycoumarins and related analogs against Coptotermes formosanus Shiraki. International Biodeterioration & Biodegradation 74: 29-135.
  2. Adfa, M., Hattori, Y., Ninomiya, M., Funahashi, Y., Yoshimura, T., Koketsu, M. 2013. Chemical constituents of Indonesian plant Protium javanicum Burm. f. and their antifeedant activities against Coptotermes formosanus Shiraki. Natural Product Research 27(3): 270-273. https://doi.org/10.1080/14786419.2012.665917
  3. Adfa, M., Kusnanda, A.J., Saputra, W.D., Banon, C., Efdi, M., Koketsu, M. 2017a. Termiticidal activity of Toona sinensis wood vinegar against Coptotermes curvignathus Holmgren. Rasayan Journal of Chemistry 10(4): 1088-1093.
  4. Adfa, M., Sanusi, A., Manaf, S., Gustian, I., Banon, C. 2017b. Antitermitic activity of Cinnamomum parthenoxylon leaves against Coptotermes curvignathus. Oriental Journal of Chemistry 33(6): 3063-3068. https://doi.org/10.13005/ojc/330646
  5. Adfa, M., Kusnanda, A.J., Livandri, F., Rahmad, R., Darwis, W., Efdi, M., Ninomiya, M., Koketsu, M. 2017c. Insecticidal activity of Toona sinensis against Coptotermes curvignathus Holmgren. Rasayan Journal of Chemistry 10(1): 153-159.
  6. Arsyad, W.O.M., Basri, E., Hendra, D., Trisatya, D.R. 2019. Termite resistance of impregnated Jabon wood (Anthocephalus cadamba Miq.) with combined impregnant agents. Journal of the Korean Wood Science and Technology 47(4): 451-458. https://doi.org/10.5658/wood.2019.47.4.451
  7. Blanchette, R.A. 1995. Degradation of the lignocellulose complex in wood. Canadian Journal of Botany 73(S1): S999-S1010. https://doi.org/10.1139/b95-350
  8. Casida, J.E., Gammon, D.W., Glickman, A.H., Lawrence, L.J. 1983. Mechanisms of selective action of pyrethroid insecticides. Annual Review of Pharmacology and Toxicology 23(1): 413-438. https://doi.org/10.1146/annurev.pa.23.040183.002213
  9. Celimene, C.C., Micales, J.A., Ferge, L., Young, R.A. 1999. Efficacy of pinosylvins against white-rot and brown-rot fungi. Holzforschung 53(5): 491-497. https://doi.org/10.1515/HF.1999.081
  10. Fengel, D., Wegener, G. eds. 2011. Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, Germany.
  11. Guillen, M.D., Manzanos, M.J. 2005. Characteristics of smoke flavourings obtained from mixtures of oak (Quercus sp.) wood and aromatic plants (Thymus vulgaris L. and Salvia lavandulifolia Vahl.). Flavour and Fragrance Journal 20(6): 676-685. https://doi.org/10.1002/ffj.1599
  12. Hadi, Y.S., Massijaya, M.Y., Zaini, L.H., Abdillah, I.B., Arsyad, W.O.M. 2018. Resistance of methyl methacrylate-impregnated wood to subterranean termite attack. Journal of the Korean Wood Science and Technology 46(6): 748-755. https://doi.org/10.5658/WOOD.2018.46.6.748
  13. Kartal, S.N., Imamura, Y., Tsuchiya, F., Ohsato, K. 2004. Preliminary evaluation of fungicidal and termiticidal activities of filtrates from biomass slurry fuel production. Bioresource Technology 95(1): 41-47. https://doi.org/10.1016/j.biortech.2004.02.005
  14. Kuswanto, E., Ahmad, I., Dungani, R. 2015. Threat of subterranean termites attack in the Asian countries and their control: A review. Asian Journal of Applied Sciences 8(4): 227-239. https://doi.org/10.3923/ajaps.2015.227.239
  15. Mathew, S., Zakaria, Z.A. 2015. Pyroligneous acid-the smoky acidic liquid from plant biomass. Applied Microbiology and Biotechnology 99(2): 611-622. https://doi.org/10.1007/s00253-014-6242-1
  16. Mohan, D., Pittman Jr, C.U., Steele, P.H. 2006. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels 20(3): 848-889. https://doi.org/10.1021/ef0502397
  17. Mohan, D., Shi, J., Nicholas, D.D., Pittman Jr, C.U., Steele, P.H., Cooper, J.E. 2008. Fungicidal values of bio-oils and their lignin-rich fractions obtained from wood/bark fast pyrolysis. Chemosphere 71(3): 456-465. https://doi.org/10.1016/j.chemosphere.2007.10.049
  18. Mun, S.-P., Ku, C.-S., Park, S.-B. 2007. Physicochemical characterization of pyrolyzates produced from carbonization of lignocellulosic biomass in a batch-type mechanical kiln. Journal of Industrial and Engineering Chemistry 13(1): 127-132.
  19. Mun, S.-P., Nicholas, D.D., 2017. Effect of proanthocyanidin-rich extracts from Pinus radiata bark on termite feeding deterrence. Journal of the Korean Wood Science and Technology 45(6): 720-727. https://doi.org/10.5658/WOOD.2017.45.6.720
  20. Nakai, T., Kartal, S.N., Hata, T., Imamura, Y. 2007. Chemical characterization of pyrolysis liquids of wood-based composites and evaluation of their bio-efficiency. Building and Environment 42(3): 1236-1241. https://doi.org/10.1016/j.buildenv.2005.11.022
  21. Oramahi, H.A.,Yoshimura, T. 2013. Antifungal and antitermitic activities of wood vinegar from Vitex pubescens Vahl. Journal of Wood Science 59(4): 344-350. https://doi.org/10.1007/s10086-013-1340-8
  22. Oramahi, H.A., Yoshimura, T., Diba, F., Setyawati, D., Nurhaida. 2018. Antifungal and antitermitic activities of wood vinegar from oil palm trunk. Journal of Wood Science 64(3): 311-317. https://doi.org/10.1007/s10086-018-1703-2
  23. Pardede, A., Adfa, M., Kusnanda, A.J., Ninomiya, M., Koketsu, M. 2017. Flavonoid rutinosides from Cinnamomum parthenoxylon leaves and their hepatoprotective and antioxidant activity. Medicinal Chemistry Research 26(9): 2074-2079. https://doi.org/10.1007/s00044-017-1916-8
  24. Sidi, M.B., Islam, M.T., Ibrahim, Y., Omar, D. 2012. Effect of insecticide residue and spray volume application of azadirachtin and rotenone on Trichogramma papilionis (Hymenoptera: Trichogrammatidae). International Journal of Agriculture and Biology 14(5): 805-810.
  25. Suresh, G., Pakdel, H., Rouissi, T., Brar, S.K., Fliss, I., Roy, C. 2019. In vitro evaluation of antimicrobial efficacy of pyroligneous acid from softwood mixture. Biotechnology Research and Innovation 3: 47-53. https://doi.org/10.1016/j.biori.2019.02.004
  26. Theapparat, Y., Chandumpai, A., Leelasuphakul, W., Laemsak, N., Ponglimanont, C. 2014. Physicochemical characteristics of wood vinegars from carbonization of Leucaena leucocephala, Azadirachta indica, Eucalyptus camaldulensis, Hevea brasiliensis and Dendrocalamus asper. Kasetsart Journal-Natural Science 48(6): 916-938.
  27. Tiilikkala, K., Fagernas, L., Tiilikkala, J. 2010. History and use of wood pyrolysis liquids as biocide and plant protection product. The Open Agriculture Journal 4: 111-118. https://doi.org/10.2174/1874331501004010111
  28. Wada, T. 1997. Charcoal Handbook. Forest management section, agriculture, forestry and fisheries division, Bureau of labour and economic affairs, Tokyo Metropolitan Government. Tokyo, Japan, pp.92.
  29. Wei, X., Li, G.H., Wang, X.L., He, J.X., Wang, X.N., Ren, D.M., Lou, H.X., Shen, T. 2017. Chemical constituents from the leaves of Cinnamomum parthenoxylon (Jack) Meisn (Lauraceae). Biochemical Systematics and Ecology 70: 95-98. https://doi.org/10.1016/j.bse.2016.11.004
  30. Wititsiri, S. 2011. Production of wood vinegars from coconut shells and additional materials for control of termite workers, Odontotermes sp. and striped mealy bugs, Ferrisia virgata. Songklanakarin Journal of Science & Technology 33(3): 349-354.
  31. Yatagai, M., Nishimoto, M., Hori, K., Ohira, T. Shibata, A. 2002. Termiticidal activity of wood vinegar, its components and their homologues. Journal of Wood Science 48(4): 338-342. https://doi.org/10.1007/BF00831357
  32. Yoon, S.-M., Kim, Y.-S., Kim, Y.-K., Kim, T.-J. 2018. A novel endo-$\beta$-1, 4-xylanase from Acanthophysium sp. KMF001, a wood rotting fungus. Journal of the Korean Wood Science and Technology 46(6): 670-680. https://doi.org/10.5658/WOOD.2018.46.6.670
  33. Zhai, M., Shi, G., Wang, Y., Mao, G., Wang, D., Wang, Z. 2015. Chemical compositions and biological activities of pyroligneous acids from walnut shell. BioResources 10(1): 1715-1729.