DOI QR코드

DOI QR Code

Parametric Imaging with Respiratory Motion Correction for Contrast-Enhanced Ultrasonography

조영증강 초음파 진단에서 호흡에 의한 흔들림을 보정한 파라미터 영상 생성 기법

  • Received : 2019.06.19
  • Accepted : 2019.08.31
  • Published : 2020.02.29

Abstract

In this paper, we introduce a method to visualize the contrast diffusion patterns and the dynamic vascular patterns in a contrast-enhanced ultrasound image sequence. We present an imaging technique to visualize parameters such as contrast arrival time, peak intensity time, and contrast decay time in contrast-enhanced ultrasound data. The contrast flow pattern and its velocity are important for characterizing focal liver lesions. We propose a method for representing the contrast diffusion patterns as an image. In the methods, respiratory motion may degrade the accuracy of the parametric images. Therefore, we present a respiratory motion tracking technique that uses dynamic weights and a momentum factor with respect to the respiration cycle. Through the experiment using 72 CEUS data sets, we show that the proposed method makes it possible to overcome the limitation of analysis by the naked eye and improves the reliability of the parametric images by compensating for respiratory motion in contrast-enhanced ultrasonography.

본 연구에서는 조영증강 초음파 영상에서 조영효과 확산 패턴과 동적 혈류 패턴을 가시화 하는 방법론을 제시한다. 세부적으로 조영증강 초음파 데이터에서 조영제의 전이시간, 최대 명도변화, 조영효과의 감쇄 시간 등과 같은 진단 파라미터를 영상으로 생성하는 기법을 제안한다. 간병변 진단과 같은 의료 진단에서 조영제의 전이와 확산 속도는 매우 중요한 요소가 된다. 이에 본 연구에서는 조영효과의 확산 패턴을 하나의 영상으로 표현하는 방법을 제시하였다. 이 과정에서 호흡에 의한 흔들림으로 인하여 영상의 정확도가 저하시키는 현상을 개선하기 위하여 호흡주기에 따른 동적 가중치와 모멘텀 요소를 사용하는 영상추적 기법을 제안하였다. 총 72개의 조영증강 데이터를 사용한 실험을 통하여, 제안된 기법이 초음파진단에서 육안 판별의 한계를 극복할 수 있게 하고, 호흡에 의한 흔들림을 보정함으로써 진단 파라미터의 신뢰도를 향상시킬 수 있음을 보인다.

Keywords

References

  1. X. Liang, Q. Cao, R. Huang, and L. Lin, "Reconizing focal liver lesions in contrast-enhanced ultrasound with discriminatively trained spatio-temporal model," arXiv:1502.007540v1[cs.CV] 3 Feb. 2015.
  2. X. Ma, W. Ling, F. Xia, Y. Zhang, C. Zhu, and J. He, "Application of Contrast-Enhanced Ultrasound(CUES) in lymphomatous lymph nodes: a comparison between PET/CT and Contrast-Enhanced CT," Contrast Media & Molecular Imaging, Vol.2019, article ID 5709698, https://doi.org/10.1155/2019/5709698, 2019.
  3. N. Li, H. Ding, P. Fan, X. Lin, C. Xu, W. Wang, X. Xu, and J. Wang, " Intrahepatic transit time predicts liver fibrosis in patients with chronic hepatitis B: quantitative assessment with contrast-enhanced ultrasonography," Ultrasound in Medicine and Biology, Vol.36, No.7, pp.1066-1075, 2010. https://doi.org/10.1016/j.ultrasmedbio.2010.04.012
  4. N. Rognin, M. Arditi, L. Mercier, J. Peter, A. Frinking, M. Schneider, G. Perrenoud, A. Anaye, J. Meuwly, and F. Tranquart, "Parametric imaging for characterizing focal liver lesions in contrast-enhanced ultrasound," IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control. Vol.57, No.11, pp.2503-2511, 2010. https://doi.org/10.1109/TUFFC.2010.1716
  5. R. Iezzi, G. Petrone, A. Ferrante, L. Lauriola, G. Vincenzoni, M. F. la Torre, F. Snider, G. Rindi, and L. Bonomo, "The role of contrast-enhanced ultrasound (CEUS) in visualizing atherosclerotic carotid plaque vulnerability: Which injection protocol? Which scanning technique," European Journal of Radiology, Vol.84, No.1, pp.865-871, 2015. https://doi.org/10.1016/j.ejrad.2015.01.024
  6. L. Chiorean, V. Cantisani, C. Jenssen, P. S. Sidhu, U. Baum, and C. F. Dietrich, "Focal masses in a non-cirrhotic liver: The additional benefit of CEUS over baseline imaging," European Journal of Radiology, Vol.84, No.1, pp.1636-1643, 2015. https://doi.org/10.1016/j.ejrad.2015.05.007
  7. A. Lim, S. Taylor-Robinson, N Patel, R. Eckersley, R. Goldin, G Hamilton, G. Foster, H. Thomas, D. Cosgrove, and M. Blomley, "Hepatic vein transit times using a microbubble agent can predict disease severity noninvasively in patients with hepatitis C," Gut 2005, Vol.54, No.1, pp.128-133, 2005.
  8. S. Wilson and P. Burns, "An algorithm for the diagnosis of focal liver masses using microbubble contrast-enhanced pulse-inversion sonography," American Journal of Roentgenology, Vol.186, No.1, pp.1401-1411, 2006. https://doi.org/10.2214/AJR.04.1920
  9. C. Dietrich, "Characterisation of focal liver lesions with contrast enhanced ultrasonography," European Journal of Radiology, Vol.10, No.11, pp.9-17, 2003.
  10. J. McClelland, D. Hawkes, T. Schaeffter, and A. King, "Respiratory motion models: a review," Medical Image Analysis, Vol.17, No.1, pp.19-42, 2013. https://doi.org/10.1016/j.media.2012.09.005
  11. J. Zhang, M. Din, F. Meng, M. Yuchi, and X. Zhang, "Respiratory motion correction in free-breathing ultrasound image sequence for quantification of hepatic perfusion," Medical Physics, Vol.38, No.1, pp.4737-4748, 2011. https://doi.org/10.1118/1.3606456
  12. M. Nakamoto, H. Hirayama, Y. Sato, K. Konishi, Y. Kakeji, M. Hashizume, and S. Tamura, "Recovery of respiratory motion and deformation of the liver using laparoscopic freehand 3d ultrasound system," Medical Image Analysis, Vol.11, No.5, pp.429-442, 2007. https://doi.org/10.1016/j.media.2007.07.009
  13. S. Mule, N. Kachenoura, O. Lucidarme, A. Oliverira, C. Pellot-Barakat, A. Herment, and F. Frouin, "An automatic respiratory gating method for the improvement of microcirculation evaluation: application to contrast-enhanced ultrasound studies of focal liver lesions," Physics in Medicine and Biology, Vol.56, No.1, pp.5153-5165, 2011. https://doi.org/10.1088/0031-9155/56/16/005
  14. V. Hamy, N. Dikaios, S. Punwani, A. Melbourne, A. Latifoltojar, J. Makanyanga, M. Chouhan, E. Helbren, A. Menys, S. Taylor, D. Atkinson, "Respiratory motion correction in dynamic MRI using robust data decomposition registration-Application to DCE-MRI," Medical Image Analysis, Vol.18, No.2, pp.301-313, 2014. https://doi.org/10.1016/j.media.2013.10.016
  15. W. Jiang, Z. Liu, K.-H. Lee, S. Chen, Y.-L. Ng, Q. Dou, H.-C. Chang, and K.-W. Kwok, "Respiratory motion correction in abdomical MRI using a densely connected U-Net with GAN-guided training," arxiv:2906.09745, 2019.
  16. J. Gance, T. Dewez, and J. Travelletti, "Target detection and tracking of moving objects for characterizing landslide displacement from time-lapse terrestrial optical image," Engineering Geology, Vol.172, No.1, pp.26-40, 2014. https://doi.org/10.1016/j.enggeo.2014.01.003
  17. X. Qian, L. Han, and Y. Cheng, "An object tracking method based on local matting for night fusion image," Infrared Physics & Technology, Vol.67, No.1, pp.455-461, 2014. https://doi.org/10.1016/j.infrared.2014.09.006
  18. J. Yan, F. Wang , X. Cao, and J. Zhang , "Robust object tracking using least absolute deviation," Image and Vision Computing, Vol.32, No.1, pp.930-939, 2014. https://doi.org/10.1016/j.imavis.2014.08.008