DOI QR코드

DOI QR Code

A non-inferiority study evaluating a new extended-release preparation of tilmicosin injected subcutaneously vs. ceftiofur administered intramammary, as dry-cow therapy in Holstein Friesian cows

  • Ortega, Esteban (Department of Animal Production-Ruminants, School of Veterinary Medicine, National Autonomous University of Mexico) ;
  • Alfonseca-Silva, Edgar (Department of Microbiology and Immunology, School of Veterinary Medicine, National Autonomous University of Mexico) ;
  • Posadas, Eduardo (Department of Animal Production-Ruminants, School of Veterinary Medicine, National Autonomous University of Mexico) ;
  • Tapia, Graciela (Department of Genetics and Biostatistics, School of Veterinary Medicine, National Autonomous University of Mexico) ;
  • Sumano, Hector (Department of Physiology and Pharmacology, School of Veterinary Medicine, National Autonomous University of Mexico)
  • Received : 2020.08.27
  • Accepted : 2020.09.25
  • Published : 2020.11.30

Abstract

Background: A new, extended long-acting tilmicosin (TLAe) preparation was tested against intramammary ceftiofur (CEF) using a non-inferiority trial model during dry-cow therapy (DCT) in a farm with high bovine population density and deficient hygiene application. Objectives: To evaluate the possibility that TLAe administered parenterally can achieve non-inferiority status compared to CEF administered intramammary for DCT. Methods: Cows were randomly assigned to TLAe (20 mg/kg subcutaneous; n = 53) or CEF (CEF-HCl, 125 mg/quarter; n = 38 cows) treatment groups. California mastitis testing, colony-forming unit assessment (CFU/mL), and number of cases positive for Staphylococcus aureus were quantified before DCT and 7 d after calving. A complete cure was defined as no bacteria isolated; partial cure when CFU/mL ranged from 150 to 700, and cure-failure when CFU/mL was above 700. Results: TLAe and CEF had overall cure rates of 57% and 53% (p > 0.05) and S. aureus cure rates of 77.7% and 25%, respectively (p < 0.05). The pathogens detected at DCT and 7 days after calving were S. aureus (62.71% and 35.55%), Staphylococcus spp. (22.03% and 35.55%), Streptococcus uberis (10.16% and 13.33%), and Escherichia coli (5.08% and 15.55%). Non-inferiority and binary logistic regression analyses revealed a lack of difference in overall efficacies of TLAe and CEF. Apart from S. aureus, S. uberis was the predominant pathogen found in both groups. Conclusions: This study is the first successful report of parenteral DCT showing comparable efficacy as CEF, the gold-standard. The extended long-term pharmacokinetic activity of TLAe explains these results.

Keywords

Acknowledgement

The authors thank Casal's International S.A. de C.V, for the donation of both of the pharmaceutical preparations tested.

References

  1. Hogeveen H. Mastitis is an economic problem. In: Proceedings of the British Mastitis Conference; October 12, 2005, Warwickshire, UK.
  2. Neave FK, Dodd FH, Kingwill RG, Westgarth DR. Control of mastitis in the dairy herd by hygiene and management. J Dairy Sci. 1969;52(5):696-707. https://doi.org/10.3168/jds.s0022-0302(69)86632-4
  3. Oliver SP. Frequency of isolation of environmental mastitis-causing pathogens and incidence of new intramammary infection during the nonlactating period. Am J Vet Res. 1988;49(11):1789-1793.
  4. Eberhart RJ. Management of dry cows to reduce mastitis. J Dairy Sci. 1986;69(6):1721-1732. https://doi.org/10.3168/jds.s0022-0302(86)80591-4
  5. Green MJ, Bradley AJ, Medley GF, Browne WJ. Cow, farm, and management factors during the dry period that determine the rate of clinical mastitis after calving. J Dairy Sci. 2007;90(8):3764-3776. https://doi.org/10.3168/jds.2007-0107
  6. Sol J, Sampimon OC, Snoep JJ, Schukken YH. Factors associated with bacteriological cure after dry cow treatment of subclinical staphylococcal mastitis with antibiotics. J Dairy Sci. 1994;77(1):75-79. https://doi.org/10.3168/jds.s0022-0302(94)76930-7
  7. Gruet P, Maincent P, Berthelot X, Kaltsatos V. Bovine mastitis and intramammary drug delivery: review and perspectives. Adv Drug Deliv Rev. 2001;50(3):245-259. https://doi.org/10.1016/S0169-409X(01)00160-0
  8. Gehring R, Smith GW. An overview of factors affecting the disposition of intramammary preparations used to treat bovine mastitis. J Vet Pharmacol Ther. 2006;29(4):237-241. https://doi.org/10.1111/j.1365-2885.2006.00750.x
  9. Erskine RJ, Wagner S, DeGraves FJ. Mastitis therapy and pharmacology. Vet Clin North Am Food Anim Pract. 2003;19(1):109-138. https://doi.org/10.1016/S0749-0720(02)00067-1
  10. Nickerson SC, Owens WE, Fox LK, Scheifinger CC, Shryock TR, Spike TE. Comparison of tilmicosin and cephapirin as therapeutics for Staphylococcus aureus mastitis at dry-off. J Dairy Sci. 1999;82(4):696-703. https://doi.org/10.3168/jds.S0022-0302(99)75286-0
  11. Dingwell RT, Leslie KE, Duffield TF, Schukken YH, DesCoteaux L, Keefe GP, et al. Efficacy of intramammary tilmicosin and risk factors for cure of Staphylococcus aureus infection in the dry period. J Dairy Sci. 2003;86(1):159-168. https://doi.org/10.3168/jds.S0022-0302(03)73596-6
  12. Mohammadsadegh M. Impact of intramammary tilmicosin infusion as a dry cow therapy. J Vet Pharmacol Ther. 2018;41(1):22-27. https://doi.org/10.1111/jvp.12427
  13. Scorneaux B, Shryock TR. Intracellular accumulation, subcellular distribution, and efflux of tilmicosin in bovine mammary, blood, and lung cells. J Dairy Sci. 1999;82(6):1202-1212. https://doi.org/10.3168/jds.S0022-0302(99)75343-9
  14. Fey PD, Endres JL, Yajjala VK, Widhelm TJ, Boissy RJ, Bose JL, et al. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. mBio. 2013;4(1):e00537-e12.
  15. Ziv G, Shem-Tov M, Glickman A, Winkler M, Saran A. Tilmicosin antibacterial activity and pharmacokinetics in cows. J Vet Pharmacol Ther. 1995;18(5):340-345. https://doi.org/10.1111/j.1365-2885.1995.tb00601.x
  16. Naccari F, Martino D, Giofre F, Passantino A, De Montis P. Therapeutic efficacy of tilmicosin in ovine mammary infections. Small Rumin Res. 2003;47(1):1-9. https://doi.org/10.1016/S0921-4488(02)00196-7
  17. Owens WE, Nickerson SC, Ray CH. Efficacy of parenterally or intramammarily administered tilmicosin or ceftiofur against Staphylococcus aureus mastitis during lactation. J Dairy Sci. 1999;82(3):645-647. https://doi.org/10.3168/jds.S0022-0302(99)75279-3
  18. Gutierrez L, Soriano R, Martinez-Cortes I, Miranda-Calderon J, Sumano H. Pharmacokinetics of a new parenteral formulation of tilmicosin-la in cows. Pak Vet J. 2016;36:165-168.
  19. Mendoza J, Martinez-Cortes I, Lopez-Ordaz R, Gutierrez L, Sumano H. Concentrations of tilmicosin in mammary gland secretions of dairy cows following subcutaneous administration of one or two doses of an experimental preparation of tilmicosin and its efficacy against intramammary infections caused by Staphylococcus aureus. Am J Vet Res. 2016;77(9):922-930. https://doi.org/10.2460/ajvr.77.9.922
  20. Kivaria FM, Noordhuizen JP, Nielen M. Interpretation of California mastitis test scores using Staphylococcus aureus culture results for screening of subclinical mastitis in low yielding smallholder dairy cows in the Dar es Salaam region of Tanzania. Prev Vet Med. 2007;78(3-4):274-285. https://doi.org/10.1016/j.prevetmed.2006.10.011
  21. Procedures for Collecting Milk Samples [Internet]. New Prague: National Mastitis Council; http://www.nmconline.org. Updated 2004. Accessed 2019 Aug.
  22. Carter G, Cole J Jr. Diagnostic Procedures in Veterinary Bacteriology and Mycology. 5th ed. San Diego: Academic Press; 1991, p 620.
  23. IBM Corporation. IBM SPSS Statistics Base 20. Armonk: IBM Corporation; 2011.
  24. Johnson AP, Godden SM, Royster E, Zuidhof S, Miller B, Sorg J. Randomized noninferiority study evaluating the efficacy of 2 commercial dry cow mastitis formulations. J Dairy Sci. 2016;99(1):593-607. https://doi.org/10.3168/jds.2015-10190
  25. Flight L, Julious SA. Practical guide to sample size calculations: non-inferiority and equivalence trials. Pharm Stat. 2016;15(1):80-89. https://doi.org/10.1002/pst.1716
  26. Samaniego-Barron ML, Contreras JJL, Jaramillo-Arango CJ, Aguilar-Romero F, Navarrete JV, Hernandez-Castro R, et al. Antimicrobial resistance in Mannheimia haemolytica strains isolated from dairy cattle nasal exudate. Vet Mex. 2012;43(2):123-132.
  27. Xolalpa VM, Perez-Ruano M, Garcia C. Factores asociados a eventos de falla reproductiva de los bovinos hembras del Complejo Agropecuario e Industrial de Tizayuca (CAITSA), Hidalgo Mexico, durante el periodo de 2000 a 2001. Rev Salud Anim. 2003;25(2):129-137.
  28. Cervantes-Escoto F, Cesin-Vargas A, Mamani-Ono I. Standard quality of milk in the State of Hidalgo, Mexico. Rev Mex De Cienc Pecu. 2013;4(1):75-86.
  29. Cuevas-Reyesa V, Espinosa-Garcia JA, Flores-Mendiola AB, Romero-Santilland F, Velez-Izquierdo A, Jolalpa-Barrera JL, et al. A diagnosis of the milk agrifood chain in the State of Hidalgo. Tec Pecu Mex. 2007;45(1):25-40.
  30. Dodd FH, Westgarth DR, Neave FK, Kingwill RG. Mastitis--the strategy of control. J Dairy Sci. 1969;52(5):689-695.
  31. Natzke RP, Everett RW, Bray DR. Effect of drying off practices on mastitis infection. J Dairy Sci. 1975;58(12):1828-1835. https://doi.org/10.3168/jds.s0022-0302(75)84794-1
  32. Jayarao BM, Gillespie BE, Lewis MJ, Dowlen HH, Oliver SP. Epidemiology of Streptococcus uberis intramammary infections in a dairy herd. Zentralbl Veterinarmed B. 1999;46(7):433-442.
  33. Keefe G. Update on control of Staphylococcus aureus and Streptococcus agalactiae for management of mastitis. Vet Clin North Am Food Anim Pract. 2012;28(2):203-216. https://doi.org/10.1016/j.cvfa.2012.03.010
  34. Zecconi A. Staphylococcus aureus mastitis: what we need to know to control them. Isr J Vet Med. 2010;65:93-99.
  35. Nickerson SC, Ryman VE. Antibiotic therapy in mastitis control for lactating and dry cows. University of Georgia. Extension. Bulletin 1516, May 2019. https://secure.caes.uga.edu/extension/publications/files/pdf/B%201516_1.PDF. Updated 2020. Accessed 2020 Aug 27.
  36. Kerro Dego O, van Dijk JE, Nederbragt H. Factors involved in the early pathogenesis of bovine Staphylococcus aureus mastitis with emphasis on bacterial adhesion and invasion. A review. Vet Q. 2002;24(4):181-198. https://doi.org/10.1080/01652176.2002.9695135
  37. McDougall S, Agnew KE, Cursons R, Hou XX, Compton CR. Parenteral treatment of clinical mastitis with tylosin base or penethamate hydriodide in dairy cattle. J Dairy Sci. 2007;90(2):779-789. https://doi.org/10.3168/jds.S0022-0302(07)71562-X
  38. Barkema HW, Schukken YH, Zadoks RN. Invited Review: The role of cow, pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus aureus mastitis. J Dairy Sci. 2006;89(6):1877-1895. https://doi.org/10.3168/jds.S0022-0302(06)72256-1
  39. Newbould FH. Antibiotic treatment of experimental Staphylococcus aureus infections of the bovine mammary gland. Can J Comp Med. 1974;38(4):411-416.
  40. Zadoks RN, Allore HG, Barkema HW, Sampimon OC, Wellenberg GJ, Grohn YT, et al. Cow- and quarter-level risk factors for Streptococcus uberis and Staphylococcus aureus mastitis. J Dairy Sci. 2001;84(12):2649-2663. https://doi.org/10.3168/jds.S0022-0302(01)74719-4
  41. Berry EA, Hillerton JE. The effect of selective dry cow treatment on new intramammary infections. J Dairy Sci. 2002;85(1):112-121. https://doi.org/10.3168/jds.S0022-0302(02)74059-9
  42. Dohoo IR, Smith J, Andersen S, Kelton DF, Godden S; Mastitis Research Workers' Conference. Diagnosing intramammary infections: evaluation of definitions based on a single milk sample. J Dairy Sci. 2011;94(1):250-261. https://doi.org/10.3168/jds.2010-3559