DOI QR코드

DOI QR Code

Generation of cynomolgus monkey fetuses with intracytoplasmic sperm injection based on the MII-stage oocytes acquired by personalized superovulation protocol

  • Huang, Zhangqiong (Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Li, Yun (Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Jiang, Qinfang (Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Wang, Yixuan (Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Ma, Kaili (Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Li, Qihan (Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College)
  • Received : 2019.09.27
  • Accepted : 2020.03.02
  • Published : 2020.05.31

Abstract

Background: Mature oocytes at the metaphase II status (MII-stage oocytes) played an important role in assisted reproductive technology in non-human primates. Objectives: In order to improve the proportion of MII-stage oocytes retrieval, three different superovulation protocols were performed on 24 female cynomolgus monkeys. Methods: All the monkeys received once-daily injection of follicle-stimulating hormone (25 international unit [IU]) on day 3 of the menstruation, 3-day intervals, twice daily for 8-12 days until the time of human chorionic gonadotropin (1,500 IU) injection, on the 14-17th day of menstruation collecting oocytes. The difference between protocol I and protocol II was that 0.1 mg the gonadotropin-releasing hormone agonist was injected on day 1 of the menstruation, while the difference between personalized superovulation protocol and protocol II was that oocytes could be collected on the 14-17th day of menstrual cycle according to the length of each monkey. Results: The total number of oocytes harvested using the personalized superovulation protocol was much higher than that using protocol I (p < 0.05), and the proportion of MII-stage oocytes was significantly greater than that from either superovulation protocol I or II (p < 0.001 and p < 0.01 respectively), while the proportion of immature oocytes at the germinal vesicle was less than that from superovulation protocol I (p < 0.05). Conclusions: The personalized superovulation protocol could increase the rate of MII-stage oocytes acquired, and successfully develop into embryos after intracytoplasmic sperm injection, and eventually generated fetus.

Keywords

Acknowledgement

We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

References

  1. Bavister BD, Boatman DE, Collins K, Dierschke DJ, Eisele SG. Birth of rhesus monkey infant after in vitro fertilization and nonsurgical embryo transfer. Proc Natl Acad Sci U S A. 1984;81(7):2218-2222. https://doi.org/10.1073/pnas.81.7.2218
  2. Balmaceda JP, Gastaldi C, Ord T, Borrero C, Asch RH. Tubal embryo transfer in cynomolgus monkeys: effects of hyperstimulation and synchrony. Hum Reprod. 1988;3(4):441-443. https://doi.org/10.1093/oxfordjournals.humrep.a136724
  3. Kubisch HM, Gagliardi C, Williams VM, Ribka EP, Ratterree MS. In vitro fertilization in the pigtailed macaque (Macaca nemestrina). Theriogenology. 2006;66(4):749-754. https://doi.org/10.1016/j.theriogenology.2005.12.011
  4. Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R, Kamioka M, Tomioka I, Sotomaru Y, Hirakawa R, Eto T, Shiozawa S, Maeda T, Ito M, Ito R, Kito C, Yagihashi C, Kawai K, Miyoshi H, Tanioka Y, Tamaoki N, Habu S, Okano H, Nomura T. Generation of transgenic non-human primates with germline transmission. Nature. 2009;459(7246):523-527. https://doi.org/10.1038/nature08090
  5. Simerly CR, Castro CA, Jacoby E, Grund K, Turpin J, McFarland D, Champagne J, Jimenez JB Jr, Frost P, Bauer C, Hewitson L, Schatten G. Assisted reproductive technologies (ART) with baboons generate live offspring: a nonhuman primate model for ART and reproductive sciences. Reprod Sci. 2010;17(10):917-930. https://doi.org/10.1177/1933719110374114
  6. Shimozawa N, Nakamura S, Takahashi I, Hatori M, Sankai T. Characterization of a novel embryonic stem cell line from an ICSI-derived blastocyst in the African green monkey. Reproduction. 2010;139(3):565-573. https://doi.org/10.1530/REP-09-0067
  7. Ko DS, Lee SH, Park DW, Yang KM, Lim CK. Pregnancy and fertilization potential of immature oocytes retrieved in intracytoplasmic sperm injection cycles. Clin Exp Reprod Med. 2015;42(3):118-125. https://doi.org/10.5653/cerm.2015.42.3.118
  8. El Hajj N, Haaf T. Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil Steril. 2013;99(3):632-641. https://doi.org/10.1016/j.fertnstert.2012.12.044
  9. Dupont C, Bavister BD, Armant DR, Brenner CA. Rhesus macaque embryos derived from MI oocytes maturing after retrieval display high rates of chromosomal anomalies. Hum Reprod. 2009;24(4):929-935. https://doi.org/10.1093/humrep/den429
  10. Schramm RD, Paprocki AM, VandeVoort CA. Causes of developmental failure of in-vitro matured rhesus monkey oocytes: impairments in embryonic genome activation. Hum Reprod. 2003;18(4):826-833. https://doi.org/10.1093/humrep/deg144
  11. Alvarez C, Garcia-Garrido C, Taronger R, Gonzalez de Merlo G. In vitro maturation, fertilization, embryo development & clinical outcome of human metaphase-I oocytes retrieved from stimulated intracytoplasmic sperm injection cycles. Indian J Med Res 2013;137(2):331-338.
  12. Stouffer RL. Pre-ovulatory events in the rhesus monkey follicle during ovulation induction. Reprod Biomed Online. 2002;4 Suppl 3:1-4. https://doi.org/10.1016/S1472-6483(12)60107-2
  13. Chen Y, Ji S, Niu Y, He X, Xie Y, Tang X, Ji W. Recombinant human gonadotropins for rhesus monkey superovulation: age and the stimulation interval are determinant to the fecundity. J Anim Vet Adv. 2011;10:3303-3307.
  14. Nusser KD, Mitalipov S, Widmann A, Gerami-Naini B, Yeoman RR, Wolf DP. Developmental competence of oocytes after ICSI in the rhesus monkey. Hum Reprod. 2001;16(1):130-137. https://doi.org/10.1093/humrep/16.1.130
  15. Hewitson L, Takahashi D, Dominko T, Simerly C, Schatten G. Fertilization and embryo development to blastocysts after intracytoplasmic sperm injection in the rhesus monkey. Hum Reprod. 1998;13(12):3449-3455. https://doi.org/10.1093/humrep/13.12.3449
  16. Yin H, Duffy DM, Gosden RG. Comparative maturation of cynomolgus monkey oocytes in vivo and in vitro. Reprod Biol Endocrinol. 2006;4(1):14. https://doi.org/10.1186/1477-7827-4-14
  17. Kanthaswamy S, Kou A, Satkoski J, Penedo MC, Ward T, Ng J, Gill L, Lerche NW, Erickson BJ, Smith DG. Genetic characterization of specific pathogen-free rhesus macaque (Macaca mulatta) populations at the California National Primate Research Center (CNPRC). Am J Primatol. 2010;72(7):587-599. https://doi.org/10.1002/ajp.20811
  18. Siddiqui RA, Sauermann U, Altmuller J, Fritzer E, Nothnagel M, Dalibor N, Fellay J, Kaup FJ, Stahl-Hennig C, Nurnberg P, Krawczak M, Platzer M. X chromosomal variation is associated with slow progression to AIDS in HIV-1-infected women. Am J Hum Genet. 2009;85(2):228-239. https://doi.org/10.1016/j.ajhg.2009.07.013
  19. Liu Z, Cai Y, Wang Y, Nie Y, Zhang C, Xu Y, Zhang X, Lu Y, Wang Z, Poo M, Sun Q. Cloning of macaque monkeys by somatic cell nuclear transfer. Cell. 2018;172(4):881-887.e7. https://doi.org/10.1016/j.cell.2018.01.020
  20. Tachibana M, Sparman M, Sritanaudomchai H, Ma H, Clepper L, Woodward J, Li Y, Ramsey C, Kolotushkina O, Mitalipov S. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature. 2009;461(7262):367-372. https://doi.org/10.1038/nature08368
  21. Lenton EA, Landgren BM, Sexton L, Harper R. Normal variation in the length of the follicular phase of the menstrual cycle: effect of chronological age. Br J Obstet Gynaecol. 1984;91(7):681-684. https://doi.org/10.1111/j.1471-0528.1984.tb04830.x
  22. Reed BG, Carr BR. The normal menstrual cycle and the control of ovulation. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, Dungan K, Grossman A, Hershman JM, Kaltsas G, Koch C, Kopp P, Korbonits M, McLachlan R, Morley JE, New M, Perreault L, Purnell J, Rebar R, Singer F, Trence DL, Vinik A, Wilson DP, editors. Endotext. South Dartmouth: MDText.com, Inc.; 2000.
  23. Shimizu K. Reproductive hormones and the ovarian cycle in macaques. J Mamm Ova Res. 2008;25:122-126. https://doi.org/10.1274/0916-7625-25.3.122
  24. Weinbauer GF, Niehoff M, Niehaus M, Srivastav S, Fuchs A, Van Esch E, Cline JM. Physiology and endocrinology of the ovarian cycle in macaques. Toxicol Pathol. 2008;36(7S):7S-23S. https://doi.org/10.1177/0192623308327412
  25. Esch EV, Cline JM, Buse E, Wood CE, Rijk EPCT, Weinbauer GF. Summary comparison of female reproductive system in human and the cynomolgus monkey (Macaca fascicularis). Toxicol Pathol. 2008;36 7_suppl:171S-172S. https://doi.org/10.1177/0192623308327415
  26. Kim JS, Yoon SB, Jeong KJ, Sim BW, Choi SA, Lee SI, Jin YB, Song BS, Lee SR, Kim SU, Chang KT. Superovulatory responses in cynomolgus monkeys (Macaca fascicularis) depend on the interaction between donor status and superovulation method used. J Reprod Dev. 2017;63(2):149-155. https://doi.org/10.1262/jrd.2016-074
  27. Nyachieo A, Spiessens C, Mwenda JM, Debrock S, D'Hooghe TM. Improving ovarian stimulation protocols for IVF in baboons: lessons from humans and rhesus monkeys. Anim Reprod Sci. 2009;110(3-4):187-206. https://doi.org/10.1016/j.anireprosci.2008.08.023
  28. Yoshida T, Nakajima M, Hiyaoka A, Suzuki MT, Cho F, Honjo S. Menstrual cycle lengths and the estimated time of ovulation in the cynomolgus monkey (Macaca fascicularis). Jikken Dobutsu. 1982;31(3):165-174.
  29. Ji W. Reproduction and Breeding of Rhesus Monkey. Beijing: Science Press; 2013.
  30. Abbott DH, Nicol LE, Levine JE, Xu N, Goodarzi MO, Dumesic DA. Nonhuman primate models of polycystic ovary syndrome. Mol Cell Endocrinol. 2013;373(1-2):21-28. https://doi.org/10.1016/j.mce.2013.01.013
  31. Lee JE, Kim SD, Jee BC, Suh CS, Kim SH. Oocyte maturity in repeated ovarian stimulation. Clin Exp Reprod Med. 2011;38(4):234-237. https://doi.org/10.5653/cerm.2011.38.4.234
  32. Van Blerkom J, Davis P. Differential effects of repeated ovarian stimulation on cytoplasmic and spindle organization in metaphase II mouse oocytes matured in vivo and in vitro. Hum Reprod. 2001;16(4):757-764. https://doi.org/10.1093/humrep/16.4.757
  33. Lovejoy DA, Corrigan AZ, Nahorniak CS, Perrin MH, Porter J, Kaiser R, Miller C, Pantoja D, Craig AG, Peter RE, Vale WW, Rivier JE, Sherwood NM. Structural modifications of non-mammalian gonadotropin-releasing hormone (GnRH) isoforms: design of novel GnRH analogues. Regul Pept. 1995;60(2-3):99-115. https://doi.org/10.1016/0167-0115(95)00116-6
  34. Goodman RL, Hileman SM, Nestor CC, Porter KL, Connors JM, Hardy SL, Millar RP, Cernea M, Coolen LM, Lehman MN. Kisspeptin, neurokinin B, and dynorphin act in the arcuate nucleus to control activity of the GnRH pulse generator in ewes. Endocrinology. 2013;154(11):4259-4269. https://doi.org/10.1210/en.2013-1331
  35. Mehl NS, Khalid M, Srisuwatanasagul S, Swangchan-Uthai T, Sirivaidyapong S. GnRH-agonist implantation of prepubertal male cats affects their reproductive performance and testicular LH receptor and FSH receptor expression. Theriogenology. 2016;85(5):841-848. https://doi.org/10.1016/j.theriogenology.2015.10.031
  36. van Loenen AC, Huirne JA, Schats R, Hompes PG, Lambalk CB. GnRH agonists, antagonists, and assisted conception. Semin Reprod Med. 2002;20(4):349-364. https://doi.org/10.1055/s-2002-36713
  37. Wu L, Ren XL, Chen W, Huang B, Zhou YF, Jin L. Influence of different gonadotropin-releasing hormone agonist administration methods on pregnancy outcomes of patients undergoing in-vitro fertilization-embryo transfer. Curr Med Sci. 2019;39(3):437-441. https://doi.org/10.1007/s11596-019-2056-9
  38. Dumont A, Dewailly D, Plouvier P, Catteau-Jonard S, Robin G. Does polycystic ovarian morphology influence the response to treatment with pulsatile GnRH in functional hypothalamic amenorrhea? Reprod Biol Endocrinol. 2016;14(1):24. https://doi.org/10.1186/s12958-016-0159-8
  39. De Jong D, Van Hooren EG, Macklon NS, Mannaerts BM, Fauser BC. Pregnancy and birth after GnRH agonist treatment for induction of final oocyte maturation in a woman undergoing ovarian stimulation for ICSI, using a GnRH antagonist (Orgalutran/Antagon) to prevent a premature LH surge: a case report. J Assist Reprod Genet. 2001;18(1):30-33. https://doi.org/10.1023/A:1026498629324
  40. Hoff JD, Quigley ME, Yen SS. Hormonal dynamics at midcycle: a reevaluation. J Clin Endocrinol Metab. 1983;57(4):792-796. https://doi.org/10.1210/jcem-57-4-792
  41. Niu Y, Yu Y, Bernat A, Yang S, He X, Guo X, Chen D, Chen Y, Ji S, Si W, Lv Y, Tan T, Wei Q, Wang H, Shi L, Guan J, Zhu X, Afanassieff M, Savatier P, Zhang K, Zhou Q, Ji W. Transgenic rhesus monkeys produced by gene transfer into early-cleavage-stage embryos using a simian immunodeficiency virus-based vector. Proc Natl Acad Sci U S A. 2010;107(41):17663-17667. https://doi.org/10.1073/pnas.1006563107
  42. Sun Q, Dong J, Yang W, Jin Y, Yang M, Wang Y, Wang PL, Hu Y, Tsien JZ. Efficient reproduction of cynomolgus monkey using pronuclear embryo transfer technique. Proc Natl Acad Sci U S A. 2008;105(35):12956-12960. https://doi.org/10.1073/pnas.0805639105
  43. Tardif S, Carville A, Elmore D, Williams LE, Rice K. Reproduction and breeding of nonhuman primates (chapter 8). In: Abee CR, Mansfield K, Tardif S, Morris T, editors. Nonhuman Primates in Biomedical Research. San Diego: Academic Press; 2012, 197-249.