Acknowledgement
We thank Professor Hui Hu from Henan Agricultural University for revising the manuscript.
References
- Tamosiunas PL, Petraityte-Burneikiene R, Lasickiene R, Akatov A, Kundrotas G, Sereika V, Lelesius R, Zvirbliene A, Sasnauskas K. Generation of recombinant porcine parvovirus virus-like particles in Saccharomyces cerevisiae and development of virus-specific monoclonal antibodies. J Immunol Res. 2014;2014(1):573531.
- Mayr A, Bachmann PA, Siegl G, Mahnel H, Sheffy BE. Characterization of a small porcine DNA virus. Arch Gesamte Virusforsch. 1968;25(1):38-51. https://doi.org/10.1007/BF01243088
- Wolf VH, Menossi M, Mourao GB, Gatti MS, Gmr MR. Molecular basis for porcine parvovirus detection in dead fetuses. Genet Mol Res. 2008;7(2):509-517. https://doi.org/10.4238/vol7-2gmr440
- Soares RM, Durigon EL, Bersano JG, Richtzenhain LJ. Detection of porcine parvovirus DNA by the polymerase chain reaction assay using primers to the highly conserved nonstructural protein gene, NS-1. J Virol Methods. 1999;78(1-2):191-198. https://doi.org/10.1016/S0166-0934(98)00177-3
- Xu YG, Cui LC, Wang HW, Huo GC, Li SL. Characterization of the capsid protein VP2 gene of a virulent strain NE/09 of porcine parvovirus isolated in China. Res Vet Sci. 2013;94(2):219-224. https://doi.org/10.1016/j.rvsc.2012.09.003
- Hanson ND, Rhode SL 3rd. Parvovirus NS1 stimulates P4 expression by interaction with the terminal repeats and through DNA amplification. J Virol. 1991;65(8):4325-4333. https://doi.org/10.1128/jvi.65.8.4325-4333.1991
- Anouja F, Wattiez R, Mousset S, Caillet-Fauquet P. The cytotoxicity of the parvovirus minute virus of mice nonstructural protein NS1 is related to changes in the synthesis and phosphorylation of cell proteins. J Virol. 1997;71(6):4671-4678. https://doi.org/10.1128/jvi.71.6.4671-4678.1997
- Rhode SL 3rd. Both excision and replication of cloned autonomous parvovirus DNA require the NS1 (rep) protein. J Virol. 1989;63(10):4249-4256. https://doi.org/10.1128/jvi.63.10.4249-4256.1989
- Hatada EN, Krappmann D, Scheidereit C. NF-kappaB and the innate immune response. Curr Opin Immunol. 2000;12(1):52-58. https://doi.org/10.1016/S0952-7915(99)00050-3
- Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Res. 2011;21(2):223-244. https://doi.org/10.1038/cr.2011.13
- Haddad JJ, Abdel-Karim NE. NF-κB cellular and molecular regulatory mechanisms and pathways: therapeutic pattern or pseudoregulation? Cell Immunol. 2011;271(1):5-14. https://doi.org/10.1016/j.cellimm.2011.06.021
- DeDiego ML, Nieto-Torres JL, Regla-Nava JA, Jimenez-Guardeno JM, Fernandez-Delgado R, Fett C, Castano-Rodriguez C, Perlman S, Enjuanes L. Inhibition of NF-κB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J Virol. 2014;88(2):913-924. https://doi.org/10.1128/JVI.02576-13
- Gagliardo R, Chanez P, Profita M, Bonanno A, Albano GD, Montalbano AM, Pompeo F, Gagliardo C, Merendino AM, Gjomarkaj M. IκB kinase-driven nuclear factor-κB activation in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2011;128(3):635-645.e1. https://doi.org/10.1016/j.jaci.2011.03.045
- Jiang G, Dandekar S. Targeting NF-κB signaling with protein kinase C agonists as an emerging strategy for combating HIV latency. AIDS Res Hum Retroviruses. 2015;31(1):4-12. https://doi.org/10.1089/AID.2014.0199
- Iwasaki A. A virological view of innate immune recognition. Annu Rev Microbiol. 2012;66(66):177-196. https://doi.org/10.1146/annurev-micro-092611-150203
- Santoro MG, Rossi A, Amici C. NF-kappaB and virus infection: who controls whom. EMBO J. 2003;22(11):2552-2560. https://doi.org/10.1093/emboj/cdg267
- Jenkins KA, Mansell A. TIR-containing adaptors in toll-like receptor signalling. Cytokine. 2010;49(3):237-244. https://doi.org/10.1016/j.cyto.2009.01.009
- O'Neill LA, Golenbock D, Bowie AG. The history of toll-like receptors - redefining innate immunity. Nat Rev Immunol. 2013;13(6):453-460. https://doi.org/10.1038/nri3446
- Wang Y, Zhang P, Liu Y, Cheng G. TRAF-mediated regulation of immune and inflammatory responses. Sci China Life Sci. 2010;53(2):159-168. https://doi.org/10.1007/s11427-010-0050-3
- Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest. 2001;107(1):7-11. https://doi.org/10.1172/JCI11830
- Randall RE, Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol. 2008;89(Pt 1):1-47. https://doi.org/10.1099/vir.0.83391-0
- Chehadeh W, Alkhabbaz M. Differential TLR7-mediated expression of proinflammatory and antiviral cytokines in response to laboratory and clinical enterovirus strains. Virus Res. 2013;174(1-2):88-94. https://doi.org/10.1016/j.virusres.2013.03.006
- Zipris D, Lien E, Nair A, Xie JX, Greiner DL, Mordes JP, Rossini AA. TLR9-signaling pathways are involved in Kilham rat virus-induced autoimmune diabetes in the biobreeding diabetes-resistant rat. J Immunol. 2007;178(2):693-701. https://doi.org/10.4049/jimmunol.178.2.693
- Sieben M, Schafer P, Dinsart C, Galle PR, Moehler M. Activation of the human immune system via toll-like receptors by the oncolytic parvovirus H-1. Int J Cancer. 2013;132(11):2548-2556. https://doi.org/10.1002/ijc.27938
- Hsu GJ, Tzang BS, Tsai CC, Chiu CC, Huang CY, Hsu TC. Effects of human parvovirus B19 on expression of defensins and toll-like receptors. Chin J Physiol 2011;54(5):367-376.
- Zhou Y, Jin XH, Jing YX, Song Y, He XX, Zheng LL, Wang YB, Wei ZY, Zhang GP. Porcine parvovirus infection activates inflammatory cytokine production through toll-like receptor 9 and NF-κB signaling pathways in porcine kidney cells. Vet Microbiol. 2017;207:56-62. https://doi.org/10.1016/j.vetmic.2017.05.030
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-408. https://doi.org/10.1006/meth.2001.1262
- Cao L, Chen J, Wei Y, Shi H, Zhang X, Yuan J, Shi D, Liu J, Zhu X, Wang X, Cui S, Feng L. Porcine parvovirus induces activation of NF-κB signaling pathways in PK-15 cells mediated by toll-like receptors. Mol Immunol. 2017;85:248-255. https://doi.org/10.1016/j.molimm.2016.12.002
- Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med. 2007;13(11):460-469. https://doi.org/10.1016/j.molmed.2007.09.002