DOI QR코드

DOI QR Code

An Analysis on Prospective Teachers' HCK : Focused on Understandings of Inverse Function Symbol

예비교사들의 HCK 분석 : 역함수 기호에 대한 이해를 중심으로

  • Received : 2020.02.03
  • Accepted : 2020.03.11
  • Published : 2020.03.30

Abstract

This study analyzed the characteristics of prospective teachers' Horizon Content Knowledge(HCK) related to understandings of an inverse function symbol. This study aimed to deduce implications of developing HCK in terms of the means which would enhance mathematics teachers' professional development. In order to achieve the aim, this study identified features of HCK by examining the previous literature on HCK, which has conformed Ball & Bass(2009) and exploring the research in AMT, including Zazkis & Leikin(2010) which has emphasized cultivating AMT through university mathematics education. In addition, a questionnaire was developed regarding the features of HCK and taken by 57 prospective teachers. By analyzing the data obtained from the written responses the participants presented, this study delineated the specific characteristics of the teachers' HCK with regard to an inverse function symbol. Additionally, several issues in the teacher education for improving HCK were discussed, and the results of this research could inspire designing and implementing a teacher education program relevant to HCK.

여러 국외 연구는 SMK의 주요 특징을 HCK와 관련하여 설명하면서 수학 교사 교육의 핵심 목표 중 하나로 HCK의 개발을 강조하였다. 그러나 국내에는 SMK의 하위 요소로서 HCK의 구체적인 의미를 살피거나 우리나라 교사들이 지닌 HCK의 특징을 본격적으로 분석한 연구가 거의 없다. 이에 이 연구는 Ball & Bass(2009)의 관점에서 HCK를 다룬 국외 연구를 검토하여 대학 수학을 통해 개발될 필요가 있는 HCK의 특징을 구체적으로 확인하였다. 또한 대학 수학의 목표가 AMT 개발에 있음을 강조한 Zazkis & Leikin(2010)에 따라 AMT 관련 선행 연구를 분석하여 HCK 개발의 기반이 되는 AMT의 핵심 특징을 구체화하였다. 이를 토대로 예비교사들의 HCK를 역함수 기호에 대한 이해에 주목하여 분석하기 위한 지필 검사 도구를 개발하였으며, 이를 예비교사 57명에게 적용하여 얻은 답변 자료를 검사 도구 개발 의도 및 함수 개념 수준에 비추어 분석하였다. 이로부터 역함수 및 역함수 기호와 관련하여 예비교사들이 지닌 HCK의 특징을 4가지로 추출하였으며, 각각의 특징이 지닌 시사점을 수학 교사 전문성 신장을 위한 HCK 개발의 측면에서 기술하였다.

Keywords

References

  1. 고희정, 고상숙(2013). 고등학교 미적분 수업에서 나타나는 초임교사의 교수를 위한 전문화된 수학 내용 지식(SCKT). 한국학교수학회논문집, 16(1), 157-185.
  2. 교육부(2015). 수학과 교육과정. 교육부 고시 제 2015-74호 [별책 8] 서울: 저자.
  3. 송근영, 방정숙(2013). 수학과 교사지식에 관한 국내 연구의 동향 분석. 한국학교수학회논문집, 16(1), 265-287.
  4. 양선아, 이수진(2019). 학교 수학과 대학 수학 사이의 연계성에 대한 중등교사의 전문성 분석-대학 수학에 대한 인식과 대수 영역에 대한 MKT를 중심으로-. 학교수학, 21(2), 419-439.
  5. 이준열 외(2017). 고등학교 수학. 서울: 천재교육.
  6. Adler, J., & Davis, Z. (2006). Opening another black box: Researching mathematics for teaching in mathematics teacher education, Journal for Research in Mathematics Education, 37(4), 270-296.
  7. Ball, D., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
  8. Ball, D., & Bass, H. (2009). With an eye on the mathematical horizon: Knowing mathematics for teaching to learners'mathematical futures. Paper presented at the 2009 Curtis Center Mathematics and Teaching Conference, LA: University of California.
  9. Brousseau, G. (1998). Theory of didactical situations in mathematics. Dordrecht: Kluwer Academic Publishers.
  10. Brown, C., & Reynolds, B. (2007). Delineating four conceptions of function: A case of composition and inverse. In T. Lamberg, & L. R. Wiest (Eds.), Proceeding of the 29th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 190-193) NV: University of Nevada.
  11. Cho, Y., & Tee, F. (2018). Complementing mathematics teachers' horizon content knowledge with an elementary-on-advanced aspect. Pedagogical Research, 3(1), 1-11.
  12. Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.) Advanced mathematical thinking (pp. 95-123). Dordrecht: Kluwer Academic Publishers.
  13. Figueiras, L., Ribeiro, M., Carrillo, J., Fernandez, S., & Deuloffeu, J. (2011). Teachers' advanced mathematical knowledge for solving mathematics teaching challenges: A response to Zazkis and Mamolo. For the Learning of Mathematics, 31(3), 26-28.
  14. Guberman, R., & Gorev, D. (2015). Knowledge concerning the mathematical horizon: A close view. Mathematics Education Research Journal, 27, 165-182. https://doi.org/10.1007/s13394-014-0136-5
  15. Harel, G., & Kaput, J. (1991). The role of conceptual entities and their symbols in building advanced mathematical concepts. In D. Tall (Ed.) Advanced mathematical thinking (pp. 82-94). Dordrecht: Kluwer Academic Publishers.
  16. Harel, G. (2013). Intellectual need. In K. Leatham (Ed.) Vital direction for mathematics education research (pp. 119-152). NY: Springer.
  17. Hodgen, J. (2011). Knowing and identity: A situated theory of mathematics knowledge in teaching. In T. Rowland & K. Ruthven (Eds.) Mathematical knowledge in teaching (pp. 27-42). NY: Springer.
  18. Jakobsen, A., Thames, M. H., Ribeiro, C. M. (2013). Delineating issues related to Horizon Content Knowledge for mathematics teaching. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of CERME 8 (pp. 3125-3134). Turkey: ERME.
  19. Klein, F. (1932). Elementary mathematics from an advanced standpoint: Arithmetic, algebra, analysis (Vol. 1. E. R. Hedrick & C. A. Noble trans.) NY: Macmillan. (Original work published 1924).
  20. Ma, L. (1996). Profound understanding of fundamental mathematics: What is it, why is it important, and how is it attained? Unpublished doctoral dissertation, Stanford: Stanford University.
  21. Mamolo, A. (2010). Polysemy of symbols: Signs of ambiguity. The Montana Mathematics Enthusiast, 7(2), 247-262.
  22. Mellone, M., Jakobsen, A., & Ribeiro, C. M. (2015). Mathematics educator transformation(s) by reflecting on students' non-standard reasoning. In K. Krainer & N. Vondrova (Eds.), Proceedings of CERME 9 (pp. 2874-2880). Prague: ERME
  23. Montes, M., Riberiro, M., Carrillo, J., & Kilpatrick, J. (2016). Understanding mathematics from a higher standpoint as a teacher: An unpacked example. In Csikos, C., Rausch, A., & Szitanyi, J. (Eds.), Proceedings of the 40th Conference of the International Group of the Psychology of Mathematics Education, Vol. 3, (pp. 351-322). Hungary: PME.
  24. Mosvold, R., & Fauskanger, J. (2014). Teachers' Beliefs about Mathematical Horizon Content Kno wledge. International Journal for Mathematics Teaching and Learning, 1-16.
  25. Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1-22. https://doi.org/10.17763/haer.57.1.j463w79r56455411
  26. Tall, D. (1991). The psychology of advanced mathematical thinking. In D. Tall (Ed.) Advanced mathematical thinking (pp. 3-21). Dordrecht: Kluwer Academic Publishers.
  27. Tall, D. (2013). How humans learn to think mathematically : Exploring the three worlds of mathematics. NY: Cambridge University Press.
  28. Turner, F. & Rowland, T. (2011). The knowledge Quartet as an organising framework for developing and deepening teachers' mathematics knowledge. In T. Rowland & K. Ruthven (Eds.) Mathematical knowledge in teaching (pp. 195-212). NY: Springer.
  29. Vale, C., McAndrew, A, & Krishnan, S. (2011). Connecting with the horizon: Developing teachers' appreciation of mathematical structure. Journal of Mathematics Teacher Education, 14, 193-212. https://doi.org/10.1007/s10857-010-9162-8
  30. Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. In D. Tall (Ed.) Advanced mathematical thinking (pp. 65-81). Dordrecht: Kluwer Academic Publishers.
  31. Wasserman, N., Weber, K., Villanueva, M., & Mejia-Ramos, J. P. (2018). Mathematics teachers' view about the limited utility of real analysis: A transport model hypothesis. The Journal of Mathematics Behavior, 50, 74-89. https://doi.org/10.1016/j.jmathb.2018.01.004
  32. Watson, J., Beswick, K., & Brown, N. (2006). Teachers' knowledge of their students as learners and how to intervene. In P. Grootenboer, R. Zevenbergen, & M. Chinnappan (Eds.), Identities, cultures and learning spaces: Proceedings of the 29th annual conference of the Mathematics Education Research Group of Australasia (pp. 551-558). Adelaide: MERGA.
  33. William, B. (2010). How mathematicians think : Using ambiguity, contradiction, and paradox to create mathematics. Princeton: Princeton University Press.
  34. Zazkis, R., & Leizin, R. (2010). Advanced mathematical knowledge in teaching practice: Perceptions of secondary mathematics teachers. Mathematical Thinking and Learning, 12, 263-281. https://doi.org/10.1080/10986061003786349
  35. Zazkis, R., & Mamolo, A. (2011). Reconceptualizing knowledge at the mathematical horizon. For the Learning of Mathematics, 31(2), 8-13.
  36. Zazkis, R., & Zazkis, D. (2014). Script writing in the mathematics classroom: Imaginary conversations on the structure of numbers. Research in Mathematics Education, 16(1) 54-70. https://doi.org/10.1080/14794802.2013.876157
  37. Zazkis, R., & Marmur, O. (2018). Groups to the rescue: Responding to situations of contingency. In N. H. Wasserman (Ed.), Connecting abstract algebra to secondary mathematics for secondary mathematics teachers, (pp. 363-387) NY: Springer.