DOI QR코드

DOI QR Code

A New Record of Epicoccum draconis Isolated from the Soil in Korea

  • Ayim, Benjamin Yaw (School of Applied Biosciences, Kyungpook National University) ;
  • Das, Kallol (School of Applied Biosciences, Kyungpook National University) ;
  • Cho, Young-Je (School of Food Science & Biotechnology, Kyungpook National University) ;
  • Lee, Seung-Yeol (School of Applied Biosciences, Kyungpook National University) ;
  • Jung, Hee-Young (School of Applied Biosciences, Kyungpook National University)
  • Received : 2020.01.15
  • Accepted : 2020.03.23
  • Published : 2020.03.31

Abstract

A fungal isolate US-18-11 was isolated from the soil in Uiseong, Korea. The mycelium growth measured after 7 days of incubation at 22℃ on malt extract agar (MEA) and oatmeal agar (OA) media was 42-43 mm and 41-44 mm in diameter, respectively. The fungal colony formed white to dull green aerial mycelia that were floccose with regular margins and olivaceous black with leaden gray patches on the reverse side. The conidia were hyaline to brown in color, ellipsoidal to ovoid, guttulate, abundant, globose, solitary, or confluent measuring 3.2-7.2×1.1-2.3 ㎛. A BLAST search of the large subunit (LSU), internal transcribed spacer (ITS) region, second largest subunit of DNA-directed RNA polymerase II (RPB2) and β-tubulin (TUB2) gene sequences revealed that the isolate US-18-11 has similarities of 99, 100, 97, and 99% with those of Epicoccum draconis CBS 186.83, respectively. A neighbor-joining phylogenetic tree constructed based on the concatenated dataset of above-mentioned sequences showed that isolate US-18-11 clustered with Epicoccum draconis CBS 186.83 in the same clade. Based on the results of morphological, cultural, and phylogenetic analysis, the isolate US-18-11 was identical to the previously described E. draconis CBS 186.83. To our knowledge, this is the first report of E. draconis in Korea.

Keywords

References

  1. Montel E, Bridge PD, Sutton BC. An integrated approach to Phoma systematics. Mycopathologia 1991;115:89-103. https://doi.org/10.1007/BF00436797
  2. Aveskamp MM, De Gruyter J, Woudenberg JHC, Verkley GJM, Crous PW. Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol 2010;65:1-60. https://doi.org/10.3114/sim.2010.65.01
  3. Aveskamp MM, De Gruyter J, Crous PW. Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Divers 2008;31:1-18.
  4. Zhang Y, Schoch CL, Fournier J, Crous PW, De Gruyter J, Woudenberg JHC, Hirayama K, Tanaka K, Pointing SB, Spatafora JW, et al. Multi-locus phylogeny of the Pleosporales: A taxonomic, ecological and evolutionary reevaluation. Stud Mycol 2009;64:85-102. https://doi.org/10.3114/sim.2009.64.04
  5. Costa EO, Gandra CR, Pires MF, Couthino SD, Castilho W, Teixeira CM. Survey of bovine mycotic mastitis in dairy herds in the State of Sao Paulo, Brazil. Mycopathologia 1993;124:13-7. https://doi.org/10.1007/BF01103051
  6. Ross AJ, Yasutake T, Leek S. Phoma herbarum, a fungal plant saprophyte, as a fish pathogen. J Fish Res Board Can 1975;32:1648-52. https://doi.org/10.1139/f75-193
  7. Rai M, Deshmukh P, Gade A, Ingle A, Kovics GJ, Irinyi L. Phoma Saccardo: Distribution, secondary metabolite production and biotechnological applications. Crit Rev Microbiol 2009;35:182-96. https://doi.org/10.1080/10408410902975992
  8. Chen Q, Jiang JR, Zhang GZ, Cai L, Crous PW. Resolving the Phoma enigma. Stud Mycol 2015;82:137-217. https://doi.org/10.1016/j.simyco.2015.10.003
  9. Baayen R, Bonants P, Verkley G, Carroll G, Aa H, De Weerdt M, Van Brouwershaven I, Schutte G, Maccheroni JW, de Blanco CG, et al. Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a cosmopolitan endophyte of woody plants, G. mangiferae (Phyllosticta capitalensis). Phytopathology 2002;92:464-77. https://doi.org/10.1094/PHYTO.2002.92.5.464
  10. Boerema GH, Bollen GJ. Conidiogenesis and conidial septation as differentiating criteria between Phoma and Ascochyta. Persoonia 1975;8:111-444.
  11. De Gruyter J, Noordeloos ME, Boerema GH. Contributions towards a monograph of Phoma (Coelomycetes ) - I. 3. Section Phoma: Taxa with conidia longer than 7 ${\mu}m$. Persoonia 1998;16:471-90.
  12. Boerema GH, De Gruyter J, Noordeloos ME, Hamers MEC. Phoma identification manual. Differentiation of specific and infraspecific taxa in culture. United Kingdom. CABI Publishing; 2004.
  13. Gardes M, Bruns T. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 1993;2:113-8. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  14. White T, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR Protocols: A guide to methods and applications. San Diego: Academic Press; 1990. p. 315-22.
  15. Rehner SA, Samuels GJ. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 1994;98:625-34. https://doi.org/10.1016/s0953-7562(09)80409-7
  16. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 1990;172:4238-46. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  17. Woudenberg JHC, Aveskamp MM, Gruyter De J, Spiers AG, Crous PW. Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia 2009;22:56-62. https://doi.org/10.3767/003158509X427808
  18. Sung GH, Sung JM, Hywel-Jones NL, Spatafora JW. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Mol Phylogenet Evol 2007;44:1204-23. https://doi.org/10.1016/j.ympev.2007.03.011
  19. Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Mol Biol Evol 1999;16:1799-808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111-20. https://doi.org/10.1007/BF01731581
  21. Quarantine Pest List. Quarantine Pest List [Internet]. Gimcheon: Animal and Plant Quarantine Agency; 2020 [cited 2020 Jan 20]. Available from: http://www.qia.go.kr.
  22. Smith IM, McNamara DG, Scott PR, Harris KM. Quarantine pests for Europe. Data sheets on quarantine pests for the European communities and for the European and mediteranean plant protection organization. Wallingford: CABI Publishing; 1992.
  23. Mendes MAS, Urben F, Oliviera AS, Marhinho VLA. Interceptacao de Phoma exigua var. foveata, praga exotica e quarentenaria para o Brasil, em germoplasma de batata procedente da Franca. Fitopatol Bras 2006;31:601-3. https://doi.org/10.1590/S0100-41582006000600012
  24. Miric E, Aitken EAB, Goulter KC. Identification in Australia of the quarantine pathogen of sunflower Phoma macdonaldii (Teleomorph: Leptosphaeria lindquistii). Aust J Agric Res 1999;50:325-32. https://doi.org/10.1071/A98072
  25. Stewart-Wade SM, Boland GJ. Selected cultural and environmental parameters influence disease severity of dandelion caused by the potential bioherbicidal fungi, Phoma herbarum and Phoma exigua. Biocontrol Sci Technol 2004;14:561-9. https://doi.org/10.1080/09583150410001682296