DOI QR코드

DOI QR Code

Evaluation of Ballistic Resistance Performance by Thickness and Proportion of Magnetic Aggregate of Concrete

콘크리트 두께와 자철광 함량에 따른 방탄 성능 평가

  • Received : 2019.09.16
  • Accepted : 2020.01.31
  • Published : 2020.02.20

Abstract

The main purpose of protective facility for small military unit is to provide the protection of not all the weapons system but the near-miss bullet in Korean army. In particular about the small caliber bullets, especially KM80 in Korea, there were many studies that both of the experiential and structural design methods dose not reflect enough the military threat. For that reason, a new equation to calculate effective anti-piercing depths for RC slabs against small caliber bullets is proposed in earlier research with actual shooting test. But, the test only considers the strength of concrete without the thickness of concrete, types of aggregate, the angle of yaw of bullet, high-strength concrete, etc. Therefore, this study evaluated the ballistic resistance performance by thickness and proportion of magnetic aggregate of concrete. As a result, we identified two major statistical estimations that the error of piercing depth by the angle of yaw of bullet could be cancelled by barrage and the thickness and proportion of magnetic aggregate of concrete dose not effect on the protection ability of concrete structure.

소부대 방호시설의 주된 목적은 적의 모든 무기체계에 대한 완벽한 방호가 아니며, 한국군의 경우, 지근탄에 대한 방호를 적용하고 있다. 특히 소구경 탄자의 경우, KM 80탄을 기준으로 설정하고 있는데, 이에 대한 경험적 설계방법과 구조공학적 설계방법 모두 현실을 제대로 반영하지 못한다는 선행연구들이 있다. 이에 실사격 실험을 수행한 선행연구에서는 콘크리트 슬래브의 소구경 탄자에 대한 관입저항력 계산식을 제안한 바 있다. 그러나, 해당 실험에서는 콘크리트 강도만을 변수로 설정하였고 콘크리트의의 두께, 굵은골재의 종류, 탄자의 편주각, 고강도 콘크리트 등에 대한 변수가 고려되지 않았다. 따라서 본 연구에서는 콘크리트의 두께와 자철광의 함량에 따른 방탄성능을 평가하였다. 그 결과 탄자의 편주각에 의한 오차를 연발사격에 의해 상쇄시킬 수 있다는 것과 자철광의 함량과 콘크리트 두께는 방호성능 향상에 영향을 주지 않는다는 것을 통계적으로 확인하였다.

Keywords

References

  1. Kim SB, Oh KD, Baek SH, Lee JH, Park YJ, Baek JH. protection engineering. 2nd ed. Paju (Korea): Cheongmoongak; 2013. 612 p. Korean.
  2. Kim SB, Kang YC, Lee JC, Baek SH, Park YJ. An assessment for anti-piercing designs of rc slabs against small caliber bullets. Journal of the Korea Institute of Military Science and Technology. 2007 Jun;10(2):69-75.
  3. Shin SW. High strength-high performance concrete design. Seoul (Korea): Kimoondang; 2011. 341 p. Korean.
  4. ROK - Army Headquarter. Stronghold and Protective Facility. Gyeryong (Korea): ROK - Army Headquater; 1998. 25 p. Korean.
  5. Suh KS. Research on multi level protective facility for non-nuclear weapon. Seoul (Korea): Hwarang-dae Research Institute; 1885. 31 p. Korean.
  6. Cho PG, Lee KI. Easy guns and ballistics. Seoul (Korea): Shinhwajunsangihoek; 2013. 50 p. Korean.
  7. Dong Yang Engineering & Construction. Study for improving the protection ability of concrete structure. Seoul (Korea): Korea Military Academy; 2005. 45 p. Korean.
  8. Schmidt WFH, Hoffman ES. 9000-psi concrete - why? why not?. Civil Engineeering-ASCE. 1975;45(5):52-5.
  9. Yang WH, Ryu DW, Kim WJ, Park DC, Seo CH. An experimental study on early strength and drying shrinkage of high strength concrete using high volumes of ground granulated blast-furnace slag(GGBS). Journal of The Korea Institute of Building Construction. 2013 Aug 20;13(4):391-9. http://doi.org/10.5345/jkibc.2013.13.4.391
  10. Min TB, Cho IS, Lee HS. Fundamental study on the strength development of cement paste using hardening accelerator and high-early-strength cement. Journal of The Korea Institute of Building Construction. 2013 Aug 20;13(4):407-15. https://doi.org/10.5345/jkibc.2013.13.4.407
  11. Kim KH, Lee JS, Noh SK, Lee HI, Hwang YS, Han CG. Fundanuemtal characteristics of high performance cement mortar using pre-mix cement according to the combination of binders and the change of mixing hours. Autumn Annual Conference of Architectural Institute of Korea; 2008 Oct 24-25; Chonnam National University, Gwangju, Korea. Seoul (Korea): Architectural Institute; 2008. p. 459-62.
  12. Kim KH, Hwang YS, Kim SS, Choi SY, Han MC, Han CG. The influence of the type of silica fume on the property of cement binder for ultra high strength. Spring Annual Conference of the Korea Institute of Building Construction, 2007 Apr 28; Konkuk University, Seoul, Korea. Seoul (Korea): The Korean Institute of Building Construction; 2007. p. 51-4.
  13. Jin SR, Pei CC, Kim KH, Hwang YS, Kim SS, Han CG. Fluidity of the cement paste depending on pulverulent combination of pre-mix cement for high-strength concrete. Autumn Annual Conference of Korea Concrete Institute. 2007 Nov 3; Sungkyunkwan University, Suwon, Korea. Seoul (Korea): Korea Concrete Institute; 2007. p. 657-60.
  14. Moon H, Kim JH, Lee JY, Chung CW. Evaluation of chloride attack resistibility of heavyweight concrete using copper slag and magnetite as aggregate. Journal of The Korea Institute of Building Construction. 2017 Dec 20;17(6):483-92. https://doi.org/10.5345/jkibc.2017.17.6.483
  15. Oh JH, Mun YB, Lee JH, Choi HK, Choi S. Aggregate effects on ${\gamma}-ray$ shielding characteristic and compressive strength of concrete. Journal of Nuclear Fuel Cycle and Waste Technology. 2016 Dec 31;14(4):357-65. http://doi.org/10.7733/jnfcwt.2016.14.4.357
  16. ACI Committee 304. Heavyweight Concrete : Measuring, Mixing, Transporting, and Placing (ACI 304.3R-96). Mi (USA): American Concrete Institute; 1996. 8 p.
  17. Mun JS, Mun JH, Yang KH, Lee H. Effect of substituting normal-weight coarse aggregate on the workability and mechanical properties of heavyweight magnetite concrete. Journal of the Korea Concrete Institute. 2013 Aug 31;25(4):439-46. https://doi.org/10.4334/jkci.2013.25.4.439
  18. Sung TJ, Basic Statistics. Seoul (Korea): Hakjisa; 2017. 598 p. Korean.