DOI QR코드

DOI QR Code

A MATHEMATICAL MODEL OF A PREY-PREDATOR TYPE FISHERY IN THE PRESENCE OF TOXICITY WITH FUZZY OPTIMAL HARVESTING

  • PAL, D. (Chandrahati Dilip Kumar High School (H.S.)) ;
  • MAHAPATRA, G.S. (Department of Mathematics, National Institute of Technology Puducherry) ;
  • MAHATO, S.K. (Department of Mathematics, Sidho-Kanho-Birsha University) ;
  • SAMANTA, G.P. (Department of Mathematics, Indian Institute of Engineering Science and Technology)
  • Received : 2019.07.20
  • Accepted : 2019.12.11
  • Published : 2020.01.30

Abstract

In this paper, we have presented a multispecies prey-predator harvesting system based on Lotka-Voltera model with two competing species which are affected not only by harvesting but also by the presence of a predator, the third species. We also assume that the two competing fish species releases a toxic substance to each other. We derive the condition for global stability of the system using a suitable Lyapunov function. The possibility of existence of bionomic equilibrium is considered. The optimal harvest policy is studied and the solution is derived under imprecise inflation in fuzzy environment using Pontryagin's maximal principle. Finally some numerical examples are discussed to illustrate the model.

Keywords

References

  1. T.G. Hallam, C.W. Clark, Non-autonomous logistic equations as models of populations in a deteriorating environment, J. Theor. Biol. 93 (1982), 303-311. https://doi.org/10.1016/0022-5193(81)90106-5
  2. T.G. Hallam, C.W. Clark, G.S. Jordan, Effects of toxicants on populations: a qualitative approach II. First order kinetics, J. Math. Biol. 18 (1983), 25-37. https://doi.org/10.1007/BF00275908
  3. T.G. Hallam, T.J. De Luna, Effects of toxicants on populations: a qualitative approach III. Environmental and food chain pathways, J. Theor. Biol. 109 (1984), 411-429. https://doi.org/10.1016/S0022-5193(84)80090-9
  4. H.I. Freedman, J.B. Shukla, Models for the effect of toxicant in a single-species and predator-prey systems, J. Math. Biol. 30 (1990), 15-30. https://doi.org/10.1007/BF00168004
  5. J. Chattopadhyay, Effect of toxic substances on a two species competitive system, Ecol. Model. 84 (1996), 287-289. https://doi.org/10.1016/0304-3800(94)00134-0
  6. J.B. Shukla, B. Dubey, Simultaneous effects of two toxicants on biological species: a mathematical model, J. Biol. Syst. 4 (1996), 109-130. https://doi.org/10.1142/S0218339096000090
  7. B. Dubey, J. Hussain, A model for the allelopathic effect on two competing species, Ecol. Model. 129 (2000), 195-207. https://doi.org/10.1016/S0304-3800(00)00228-3
  8. S.A. Nelson, The problem of oil pollution of the sea, in: F.S. Russell, M. Yonge (Eds.), Advances in Marine Biology, Academic Press, London, 1970, 215-306.
  9. A.L. Jensen, J.S. Marshall, Application of a surplus production model to assess environmental impacts on exploited populations of Daphina pluex in the laboratory, Environ. Pollut. A 28 (1982), 273-280. https://doi.org/10.1016/0143-1471(82)90143-X
  10. J. Maynard Smith, Models in Ecology, Cambridge University Press, 1974, pp. 146.
  11. J. Chattopadhyay, R.R. Sarkar, S. Mondal, Toxin-producing phytoplankton may act as a biological control for planktonic blooms-field study and mathematical modeling, J. Theor. Biol. 215 (2002), 333-344. https://doi.org/10.1006/jtbi.2001.2510
  12. M. Bandyopadhyay, T. Saha, R. Pal, Deterministic and stochastic analysis of a delayed allelopathic phytoplankton model within fluctuating environment, Nonlinear Anal. Hybrid Syst. 2 (2008), 958-970. https://doi.org/10.1016/j.nahs.2008.04.001
  13. S. Abbas, M. Sen, M. Banerjee, Almost periodic solution of a non-autonomous model of phytoplankton allelopathy, Nonlinear Dyn. 67 (2012), 203-214. https://doi.org/10.1007/s11071-011-9972-y
  14. D. Pal, G.S. Mahapatra, Effect of toxic substance on delayed competitive allelopathic phytoplankton system with varying parameters through stability and bifurcation analysis, Chaos, Solitons and Fractals 87 (2016), 109-124. https://doi.org/10.1016/j.chaos.2016.03.019
  15. C.W. Clark, Mathemalical Bioeconomics, The Optimal Management of Renewable Resources. John Wiley & Sons, New York, (1976).
  16. G.F. Gause, La Theorie Mathematique de la lutte pour la vie, Hermann, Paris.
  17. W. Silvert, W.R. Smith, Optimal exploitation of a multispecies community, Math. Biosci. 33 (1977), 121-134. https://doi.org/10.1016/0025-5564(77)90067-0
  18. M. Mesterton-Gibbons, On the optimal policy for the combined harvesting of predator and prey, Nat. Resour. Model. 3 (1988), 63-90. https://doi.org/10.1111/j.1939-7445.1988.tb00058.x
  19. D.L. Ragozin, G. Brown, Harvest policies and non market valuation in a predator /prey system, J. Environ. Econ. Manage. 12 (1985), 155-168. https://doi.org/10.1016/0095-0696(85)90025-7
  20. D. Pal, G.S. Mahapatra, G.P. Samanta, Optimal harvesting of prey{predator system with interval biological parameters: a bioeconomic model, Math. Biosci. 241 (2013), 181-187. https://doi.org/10.1016/j.mbs.2012.11.007
  21. T.K. Kar, K.S. Chaudhuri, Harvesting in a two-prey one predator fishery: a bioeconomic model, ANZIAM J. 45 (2004), 443-456. https://doi.org/10.1017/S144618110001347X
  22. D. Sadhukhan, L.N. Sahoo, B. Mondal, M. Maiti, Food chain model with optimal harvesting in fuzzy environment, J. Appl. Math. Comput. 34 (2010), 1-18. https://doi.org/10.1007/s12190-009-0301-2
  23. D. Pal, G.S. Mahapatra, A bioeconomic modeling of two-prey and one-predator fishery model with optimal harvesting policy through hybridization approach, Appl. Math. Comput. 242 (2014), 748-763. https://doi.org/10.1016/j.amc.2014.06.018
  24. P.S. Mandal, L.J.S. Allen, M. Banerjee, Stochastic modeling of phytoplankton allelopathy, Appl. Math. Model. 38 (2014), 1583-1596. https://doi.org/10.1016/j.apm.2013.08.031
  25. D. Pal, G.S. Mahapatra, G.P. Samanta, Stability and bionomic analysis of fuzzy parameter based prey-predator harvesting model using UFM, Nonlinear Dyn. 79 (2015), 1939-1955. https://doi.org/10.1007/s11071-014-1784-4
  26. D. Pal, G.S. Mahapatra, Effect of toxic substance on delayed competitive allelopathic phytoplankton system with varying parameters through stability and bifurcation analysis, Chaos, Solitons Fractals 87 (2016), 109-124. https://doi.org/10.1016/j.chaos.2016.03.019
  27. K. Maiti, M. Maiti, A numerical approach to a multi-objective optimal control problem for deteriorating multi-items under fuzzy inflation and discounting, Comput. Math. Appl. 55 (2008), 1794-1807. https://doi.org/10.1016/j.camwa.2007.07.011
  28. L.A. Zadeh, Fuzzy sets, Inf. Cont. 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  29. K.M. Miettinen, Non-Linear Multi-Objective, Optimization, Kluwer's International Series, 1999.
  30. J.D. Murray, Mathematical Biology. Springer-Verlag, New York, 1993.
  31. D. Dubois, H. Prade, Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets, Fuzzy Sets Syst. 192 (2012), 3-24. https://doi.org/10.1016/j.fss.2010.11.007
  32. L.S. Pontryagin, V.G. Boltyonsku, R.V. Gamkrelidre, E.F. Mishchenko, The mathematical theory of optimal processes, Wiley, New York, 1962.

Cited by

  1. Numerical Investigation of Fuzzy Predator-Prey Model with a Functional Response of the Form Arctan(ax) vol.9, pp.16, 2020, https://doi.org/10.3390/math9161919