References
- J. Y. Bae, I. B. Jung, and G. R. Exner, Criteria for positively quadratically hyponormal weighted shifts, Proc. Amer. Math. Soc. 130 (2002), no. 11, 3287-3294. https://doi.org/10.1090/S0002-9939-02-06493-6
- Y. B. Choi, J. K. Han, and W. Y. Lee, One-step extension of the Bergman shift, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3639-3646. https://doi.org/10.1090/S0002-9939-00-05516-7
- R. E. Curto, Quadratically hyponormal weighted shifts, Integral Equations Operator Theory 13 (1990), no. 1, 49-66. https://doi.org/10.1007/BF01195292
- R. E. Curto and L. A. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, Integral Equations Operator Theory 17 (1993), no. 2, 202-246. https://doi.org/10.1007/BF01200218
- R. E. Curto, Recursively generated weighted shifts and the subnormal completion problem. II, Integral Equations Operator Theory 18 (1994), no. 4, 369-426. https://doi.org/10.1007/BF01200183
- R. E. Curto and I. B. Jung, Quadratically hyponormal weighted shifts with two equal weights, Integral Equations Operator Theory 37 (2000), no. 2, 208-231. https://doi.org/10.1007/BF01192423
- R. E. Curto and S. H. Lee, Quartically hyponormal weighted shifts need not be 3-hyponormal, J. Math. Anal. Appl. 314 (2006), no. 2, 455-463. https://doi.org/10.1016/j.jmaa.2005.04.020
- R. E. Curto, S. H. Lee, and W. Y. Lee, A new criterion for k-hyponormality via weak subnormality, Proc. Amer. Math. Soc. 133 (2005), no. 6, 1805-1816. https://doi.org/10.1090/S0002-9939-04-07727-5
- R. E. Curto, Y. T. Poon, and J. Yoon, Subnormality of Bergman-like weighted shifts, J. Math. Anal. Appl. 308 (2005), no. 1, 334-342. https://doi.org/10.1016/j.jmaa.2005.01.028
- Y. Dong, G. Exner, I. B. Jung, and C. Li, Quadratically hyponormal recursively gener- ated weighted shifts, in Recent advances in operator theory and applications, 141-155, Oper. Theory Adv. Appl., 187, Birkhauser, Basel, 2009. https://doi.org/10.1007/978-3-7643-8893-5_7
- Y. Dong, M. R. Lee, and C. Li, New results on k-hyponormality of backward extensions of subnormal weighted shifts, J. Appl. Math. Inform. 37 (2019), no. 1-2, 73-83. https://doi.org/10.14317/jami.2019.073
- G. Exner, J. Y. Jin, I. B. Jung, and J. E. Lee, Weak Hamburger-type weighted shifts and their examples, J. Math. Anal. Appl. 462 (2018), no. 2, 1357-1380. https://doi.org/10.1016/j.jmaa.2018.02.045
- G. Exner, I. B. Jung, and S. S. Park, Weakly n-hyponormal weighted shifts and their examples, Integral Equations Operator Theory 54 (2006), no. 2, 215-233. https://doi.org/10.1007/s00020-004-1360-2
- I. B. Jung and C. Li, A formula for k-hyponormality of backstep extensions of subnormal weighted shifts, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2343-2351. https://doi.org/10.1090/S0002-9939-00-05844-5
- I. B. Jung and S. S. Park, Cubically hyponormal weighted shifts and their examples, J. Math. Anal. Appl. 247 (2000), no. 2, 557-569. https://doi.org/10.1006/jmaa.2000.6879
- I. B. Jung, Quadratically hyponormal weighted shifts and their examples, Integral Equations Operator Theory 36 (2000), no. 4, 480-498. https://doi.org/10.1007/BF01232741
- C. Krattenthaler, Advanced determinant calculus, Sem. Lothar. Combin. 42 (1999), Art. B42q, 67 pp.
- C. Li and M. R. Lee, Existence of non-subnormal completely semi-weakly hyponormal weighted shifts, Filomat 31 (2017), no. 6, 1627-1638. https://doi.org/10.2298/FIL1706627L