DOI QR코드

DOI QR Code

교량기초 종류 및 지반-구조물 상호작용을 고려한 지진취약도 분석

Seismic Fragility of Bridge Considering Foundation and Soil Structure Interaction

  • 투고 : 2020.11.02
  • 심사 : 2020.12.07
  • 발행 : 2020.12.31

초록

구조해석을 시행함에 있어 기초는 소성힌지모델로서 고정단으로 간주되고는 한다. 본 연구에서는 기초가 고정단일 때, 2m깊이의 기반암에 시공된 직접기초일 때, 그리고 기반암 심도 10m~20m 구간에 시공된 말뚝기초일 때의 기초, 교각, 교좌장치의 변위를 비교하였으며 기초에 가해지는 전단력을 비교하고, 한계 상태에 대하여 손상 확률을 계산하고 비교하였다. 고정단으로 계산되었을때 기초부 변위가 0m에 수렴하였으나, 심도 2m의 기반암 위에 시공된 직접기초는 상대적으로 변위가 발생하였고, 심도 18m의 기반암에 선단부가 관입되도록 시공된 말뚝기초는 더 큰 변위를 보였다. 또한 하부구조물인 기초의 변위가 상부구조물의 변위에도 영향을 끼치는 것으로 분석되었으나, 기초부분에 가해지는 전단력에는 세 가지 경우에 대하여 차이가 미미하였다. 교각 상단의 변위에 끼치는 영향은 직접기초와 말뚝기초간에 차이가 없는 반면, 고정단으로 가정하고 해석되었을 때와는 큰 차이가 있었다.

In performing the structural analysis, the foundation is considered to be a fixed end as a plastic hinge model. In this study, the displacements of the foundation, pier, and shoe were compared when the foundation modeled as a fixed end, a shallow foundation constructed on bedrock of 2m depth, and a pile foundation constructed in the 10m to 20m depth of bedrock. The shear force was also compared, and the probability of damage was calculated and compared for the critical condition. When calculated as a fixed end, the displacement of the foundation converged to 0mm, but the shallow foundation built on the bedrock with a depth of 2m caused relatively displacement, and the pile foundation constructed to contact the bedrock with a depth of 18m caused a larger displacement. In addition, it was analyzed that the displacement of the foundation, which is the lower structure, affects the displacement of the super structure, but the difference in shear force applied to the foundation was insignificant in the three cases. There was no difference between the shallow foundation and the pile foundation in the influence on the displacement of the top of the pier, but there was a big difference from the analysis assuming as a fixed end.

키워드

참고문헌

  1. An H. J, Jeong S.H, Shin S.B. (2019). Seismic Fragility Assessment Method for RC Bridges in Korea using a Representative Bridge. Journal of Computational Structural Engineering Institute of Korea, 32(6), 417-423. https://doi.org/10.7734/COSEIK.2019.32.6.417
  2. An H. J. (2020). A comparative study on seismic fragility of representative PSC beam bridge considering aging effect. Inha University.
  3. Baker JW. (2005). Vector-valued ground motion intensity measures for probabilistic seismic demand analysis. Standford University.
  4. Bernardo F. (2012). Pushover Seismic Analysis of Bridge Structures. Departamento de engenharia Civil, Arquitectura e Georrecursos. Technical University of Lisbon.
  5. Cornell, Jalayer, Hamburger, Foutch. (2002). Probabilistic basis for 2000 SAC FEMA steel moment frame guidelines. Journal of Structural Engineering, 526-533.
  6. Itasca consulting group. (2017). FLAC 3D manual. "A good rule of thumb".
  7. Oh Y. H, Kim Y. S. (2006). Nonlinear seismic analysis of steel structures considering foundation ground stiffness. Journal of Korean Society of Steel Construction, 18(2), 173-180.
  8. Kim H.S, Song J.K. (2010). Effect of Near-and Far-Fault Earthquakes for Seismic Fragility Curves of PSC Box Girder Bridges. EarthquakeEngineering Society of Korea, 14(5), 53-65.
  9. Lee G.H, Kim J.M, Hong K.Y, Lee E.H.(2013). A Nonlinear soil-structure interaction analysis using PML(Perfect Matched Layer), Korean Society of Civil Engineers, 704-708.
  10. PEER. (2019), Pacific Earthquake Engineering Research Center. Available at: https://ngawest2.berkeley.edu.
  11. Seo H Y, Yi J H, Kim D K, Song J K. (2010). Modified HAZUS Method for Seismic Fragility Assessment of Domestic PSC-I Girder Bridges. Journal of the Korea institute for structural maintenance and inspection, 14(2), 161-170. https://doi.org/10.11112/jksmi.2010.14.2.161