References
- Wagner EGH,Romby P. 2015. Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. Adv. Genet. 90: 133-208. https://doi.org/10.1016/bs.adgen.2015.05.001
- Melamed S, Peer A, Faigenbaum-Romm R, Gatt YE, Reiss N, Bar A, et al. 2016. Global mapping of small RNA-target interactions in bacteria. Mol. Cell. 63: 884-897. https://doi.org/10.1016/j.molcel.2016.07.026
- Frohlich KS, Gottesman S. 2018. Small regulatory RNAs in the enterobacterial response to envelope damage and oxidative stress. Microbiol. Spectr. 6: RWR-0022-2018.
- Kavita K, de Mets F, Gottesman S. 2018. New aspects of RNA-based regulation by Hfq and its partner sRNAs. Curr. Opin. Microbiol. 42: 53-61. https://doi.org/10.1016/j.mib.2017.10.014
- Gimpel M, Brantl S. 2016. Dual-function sRNA encoded peptide SR1P modulates moonlighting activity of B. subtilis GapA. RNA Biol. 13: 916-926. https://doi.org/10.1080/15476286.2016.1208894
- Evguenieva-Hackenberg E, Klug G. 2011. New aspects of RNA processing in prokaryotes. Curr. Opin. Microbiol. 14: 587-592. https://doi.org/10.1016/j.mib.2011.07.025
- Klein G, Raina S. 2017. Small regulatory bacterial RNAs regulating the envelope stress response. Biochem. Soc. Trans. 45: 417-425. https://doi.org/10.1042/BST20160367
- Klein G, Stupak A, Biernacka D, Wojtkiewicz P, Lindner B, Raina S. 2016. Multiple transcriptional factors regulate transcription of the rpoE gene in Escherichia coli under different growth conditions and when the lipopolysaccharide biosynthesis is defective. J. Biol. Chem. 291: 22999-23019. https://doi.org/10.1074/jbc.M116.748954
- Zhang Y, Yan D, Xia L, Zhao X, Osei-Adjei G, Xu S, et al. 2017. The malS-5'UTR regulates hisG, a key gene in the histidine biosynthetic pathway in Salmonella enterica serovar Typhi. Can. J. Microbiol. 63: 287-295. https://doi.org/10.1139/cjm-2016-0490
- Chao Y, Vogel J. 2016. A 3' UTR-derived small RNA provides the regulatory noncoding arm of the inner membrane stress response. Mol. Cell 61: 352-363. https://doi.org/10.1016/j.molcel.2015.12.023
- Klein G, Kobylak N, Lindner B, Stupak A, Raina S. 2014. Assembly of lipopolysaccharide in Escherichia coli requires the essential LapB heat shock protein. J. Biol. Chem. 289: 14829-14853. https://doi.org/10.1074/jbc.M113.539494
- Zhao X, Liu R, Tang H, Osei-Adjei G, Xu S, Zhang Y, et al. 2018. A 3' UTR-derived non-coding RNA RibS increases expression of cfa and promotes biofilm formation of Salmonella enterica serovar Typhi. Res. Microbiol. 169: 279-288. https://doi.org/10.1016/j.resmic.2018.04.007
- Kroger C, Rothhardt JE, Brokatzky D, Felsl A, Kary SC, Heermann R, et al. 2018. The small RNA RssR regulates myoinositol degradation by Salmonella enterica. Sci. Rep. 8: 17739. https://doi.org/10.1038/s41598-018-35784-8
- Georg J, Hess WR. 2011. cis-antisense RNA, another level of gene regulation in bacteria. Microbiol. Mol. Biol. Rev. 75: 286-300. https://doi.org/10.1128/MMBR.00032-10
- Georg J, Hess WR. 2018. Widespread antisense transcription in prokaryotes. Microbiol. Spectr. 6: RWR-0029-2018.
- Manna AC, Kim S, Cengher L, Corvaglia A, Leo S, Francois P, et al. 2018. Small RNA teg49 is derived from a sarA transcript and regulates virulence genes independent of SarA in Staphylococcus aureus. Infect. Immun. 86: pii: e00635-17.
- Argaman L, Hershberg R, Vogel J, Bejerano G, Wagner EG, Margalit H, et al. 2001. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr. Biol. 11: 941-950. https://doi.org/10.1016/S0960-9822(01)00270-6
- Saito S, Kakeshita H, Nakamura K. 2009. Novel small RNAencoding genes in the intergenic regions of Bacillus subtilis. Gene 428: 2-8. https://doi.org/10.1016/j.gene.2008.09.024
- Baekkedal C, Haugen P. 2015. The Spot 42 RNA: a regulatory small RNA with roles in the central metabolism. RNA Biol. 12: 1071-1077. https://doi.org/10.1080/15476286.2015.1086867
-
Guo MS, Updegrove TB, Gogol EB, Shabalina SA, Gross CA, Storz G. 2014. MicL, a new
${\sigma}E$ -dependent sRNA, combats envelope stress by repressing synthesis of Lpp, the major outer membrane lipoprotein. Genes Dev. 28: 1620-1634. https://doi.org/10.1101/gad.243485.114 - Beisel CL, Storz G. 2010. Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol. Rev. 34: 866-882. https://doi.org/10.1111/j.1574-6976.2010.00241.x
- Mandin P, Chareyre S, Barras F. 2016. A regulatory circuit composed of a transcription factor, IscR, and a regulatory RNA, RyhB, controls Fe-S cluster delivery. MBio. 7: e00966-16.
- Prevost K, Salvail H, Desnoyers G, Jacques JF, Phaneuf E, Masse E. 2007. The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol. Microbiol. 64: 1260-1273. https://doi.org/10.1111/j.1365-2958.2007.05733.x
- Vecerek B, Moll I, Blasi U. 2007. Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. EMBO J. 26: 965-975. https://doi.org/10.1038/sj.emboj.7601553
- Kim HM, Shin JH, Cho YB, Roe JH. 2014. Inverse regulation of Fe- and Ni-containing SOD genes by a Fur family regulator Nur through small RNA processed from 3'UTR of the sodF mRNA. Nucleic Acids Res. 42: 2003-2014. https://doi.org/10.1093/nar/gkt1071
- Tanwer P, Bauer S, Heinrichs E, Panda G, Saluja D, Rudel T, Beier D. 2017. Post-transcriptional regulation of target genes by the sRNA FnrS in Neisseria gonorrhoeae. Microbiology 163: 1081-1092. https://doi.org/10.1099/mic.0.000484
- Durand S, Storz G. 2010. Reprogramming of anaerobic metabolism by the FnrS small RNA. Mol. Microbiol. 75: 1215-1231. https://doi.org/10.1111/j.1365-2958.2010.07044.x
- Chen Z, Wang Y, Li Y, Li Y, Fu N, Ye J, et al. 2012. Esre: a novel essential non-coding RNA in Escherichia coli. FEBS Lett. 586: 1195-1200. https://doi.org/10.1016/j.febslet.2012.03.010
- Xia H, Yang X, Tang Q, Ye J, Wu H, Zhang H. 2017. EsrE-a yigP locus-encoded transcript-is a 3' UTR sRNA involved in the respiratory chain of E. coli. Front. Microbiol. 8: 1658. https://doi.org/10.3389/fmicb.2017.01658
- Peschke U, Schmidt H, Zhang HZ, Piepersberg W. 1995. Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78-11. Mol. Microbiol. 16: 1137-1156. https://doi.org/10.1111/j.1365-2958.1995.tb02338.x
- Wang Y, Ye J, Zhang H. 2012. Identification of transcriptional regulatory sequences of yigP gene in Escherichia coli. Wei Sheng Wu Xue Bao 52: 566-572.
- Jutras BL, Verma A, Stevenson B. 2012. Identification of novel DNA-binding proteins using DNA-affinity chromatography/pull down. Curr. Protoc. Microbiol. Chapter 1: Unit1F.1.
- Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
- Hempelmann E, Krafts K. 2017. The mechanism of silver staining of proteins separated by SDS polyacrylamide gel electrophoresis. Biotech. Histochem. 92: 79-85. https://doi.org/10.1080/10520295.2016.1265149
- Hou B, Lin Y, Wu H, Guo M, Petkovic H, Tao L, et al. 2018. The novel transcriptional regulator LmbU promotes lincomycin biosynthesis through regulating expression of its target genes in Streptomyces lincolnensis. J. Bacteriol. 200: e00447-17.
- Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645. https://doi.org/10.1073/pnas.120163297
- Hoopmann MR, Weisbrod CR, Bruce JE. 2010. Improved strategies for rapid identification of chemically cross-linked peptides using protein interaction reporter technology. J. Proteome. Res. 9: 6323-6333. https://doi.org/10.1021/pr100572u
- da Silva Neto JF, Braz VS, Italiani VC, Marques MV. 2009. Fur controls iron homeostasis and oxidative stress defense in the oligotrophic alpha-proteobacterium Caulobacter crescentus. Nucleic Acids Res. 37: 4812-4825. https://doi.org/10.1093/nar/gkp509
- Fillat MF. 2014. The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch. Biochem. Biophys. 546: 41-52. https://doi.org/10.1016/j.abb.2014.01.029
- Seo SW, Kim D, Latif H, O'Brien EJ, Szubin R, Palsson BO. 2014. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli. Nat. Commun. 5: 4910. https://doi.org/10.1038/ncomms5910
- Johnson M, Sengupta M, Purves J, Tarrant E, Williams PH, Cockayne A, et al. 2011. Fur is required for the activation of virulence gene expression through the induction of the sae regulatory system in Staphylococcus aureus. Int. J. Med. Microbiol. 301: 44-52. https://doi.org/10.1016/j.ijmm.2010.05.003
- Grunenwald CM, Choby JE, Juttukonda LJ, Beavers WN, Weiss A, Torres VJ, et al. 2019. Manganese detoxification by MntE is critical for resistance to oxidative stress and virulence of Staphylococcus aureus. MBio. 10: pii: e02915-18.
- Troxell B, Hassan HM. 2013. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front. Cell Infect.Microbiol. 3: 59.
- Masse E, Gottesman S. 2002. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA 99: 4620-4625. https://doi.org/10.1073/pnas.032066599
- Pannekoek Y, Huis In't Veld R, Schipper K, Bovenkerk S, Kramer G, Speijer D, et al. 2017. Regulation of Neisseria meningitidis cytochrome bc1 components by NrrF, a Furcontrolled small noncoding RNA. FEBS Open Bio. 7: 1302-1315. https://doi.org/10.1002/2211-5463.12266
- Chen Z, Lewis KA, Shultzaberger RK, Lyakhov IG, Zheng M, Doan B, et al. 2007. Discovery of Fur binding site clusters in Escherichia coli by information theory models. Nucleic Acids Res. 35: 6762-6777. https://doi.org/10.1093/nar/gkm631