DOI QR코드

DOI QR Code

Biosynthesis of (R)-(-)-1-Octen-3-ol in Recombinant Saccharomyces cerevisiae with Lipoxygenase-1 and Hydroperoxide Lyase Genes from Tricholoma matsutake

  • Lee, Nan-Yeong (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Choi, Doo-Ho (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Kim, Mi-Gyeong (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Jeong, Min-Ji (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Kwon, Hae-Jun (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Kim, Dong-Hyun (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Kim, Young-Guk (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Luccio, Eric di (School of Life Science, College of Natural Sciences, Kyungpook National University) ;
  • Arioka, Manabu (Department of Biotechnology, The University of Tokyo) ;
  • Yoon, Hyeok-Jun (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Kim, Jong-Guk (School of Life Science and Biotechnology, Kyungpook National University)
  • Received : 2020.01.29
  • Accepted : 2020.02.16
  • Published : 2020.02.28

Abstract

Tricholoma matsutake is an ectomycorrhizal fungus, related with the host of Pinus densiflora. Most of studies on T. matsutake have focused on mycelial growth, genes and genomics, phylogenetics, symbiosis, and immune activity of this strain. T. matsutake is known for its unique fragrance in Eastern Asia. The most major component of its scent is (R)-(-)-1-octen-3-ol and is biosynthesized from the substrate linoleic acid by the sequential reaction of lipoxygenase and peroxide lyase. Here, we report for the first time the biosynthesis of (R)-(-)-1-octen-3-ol of T. matsutake using the yeast Saccharomyces cerevisiae as a host. In this study, cDNA genes correlated with these reactions were cloned from T. matsutake, and expression studies of theses genes were carried out in the yeast Saccharomyces cerevisiae. The product of these genes expression study was carried out with Western blotting. The biosynthesis of (R)-(-)-1-octen-3-ol of T. matsutake in recombinant Saccharomyces cerevisiae was subsequently identified with GC-MS chromatography analysis. The biosynthesis of (R)-(-)-1-octen-3-ol with S. cerevisiae represents a significant step forward.

Keywords

References

  1. ApSimon J. 2009. The total synthesis of natural products, pp. 317-326. 7th Ed. John Wiley & Sons, National Academies Press (US), Washington (DC).
  2. Assaf S, Hadar Y, Dosoretz CG. 1997. 1-Octen-3-ol and 13-hydroperoxylinoleate are products of distinct pathways in the oxidative breakdown of linoleic acid by Pleurotus pulmonarius. Enzyme Microb. Technol. 21: 484-490. https://doi.org/10.1016/S0141-0229(97)00019-7
  3. Byers JA, Zhang QH, Birgersson G. 2004. Avoidance of nonhost plants by a bark beetle, Pityogenes bidentatus, in a forest of odors. Naturwissenschaften 91: 215-219. https://doi.org/10.1007/s00114-004-0520-1
  4. Byeon SE, Lee J, Lee E, Lee SY, Hong EK, Kim YE, et al. 2009. Functional activation of macrophages, monocytes and splenic lymphocytes by polysaccharide fraction from Tricholoma matsutake. Arch. Pharm. Res. 32: 1565-1572. https://doi.org/10.1007/s12272-009-2108-y
  5. Cronin DA, Ward MK. 1971. The characterization of some mushroom volatiles. J. Sci. Food Agric. 22: 477-479. https://doi.org/10.1002/jsfa.2740220912
  6. Da Silva NA, Srikrishnan S. 2012. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res. 12: 197-214. https://doi.org/10.1111/j.1567-1364.2011.00769.x
  7. Ding C, Lu Y, Song Y, Jia R, Jin W, Guo H. 2019. Cloning and expression analysis of hydroperoxide lyase gene in Nicotiana tabacum. Life Sci. J. 16: 23-27.
  8. Ding X, Tang J, Cao M, Guo CX, Zhang X, Zhong J, et al. 2010. Structure elucidation and antioxidant activity of a novel polysaccharide isolated from Tricholoma matsutake. Int. J. Biol. Macromol. 47: 271-275. https://doi.org/10.1016/j.ijbiomac.2010.04.010
  9. Ebina T. 2002. Antitumor effect of a peptide-glucan preparation extracted from a mycelium of Tricholoma matsutake ( S. I to and Imai) Sing. Biotherapy 16: 255-259.
  10. Francotte ER and Richert P. 1997. Applications of simulated moving-bed chromatography to the separation of the enantiomers of chiral drugs. J. Chromatogr. A 769: 101-107. https://doi.org/10.1016/S0021-9673(97)00172-6
  11. Gong M, Su L, Chen Y, Wang F, Cao J. 2001. A study on development of Shiro and productive potentialities of Tricholoma matsutake. For. Res. 15: 374-379. https://doi.org/10.3321/j.issn:1001-1498.2002.04.002
  12. Guerin-Laguette A, Vaario LM, Gill WM, Lapeyrie F, Matsushita N, Suzuki K. 2000. Rapid in vitro ectomycorrhizal infection on Pinus densiflora roots by Tricholoma matsutake. Mycoscience 41: 389-393. https://doi.org/10.1007/BF02463952
  13. Hudault S, Guignot J, Servin AL. 2001. Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection. Gut 49: 47-55. https://doi.org/10.1136/gut.49.1.47
  14. Hur, YH, Kim OK. 1991. Studies on the mineral content of edible mushrooms. J. Microbiol. Biotechnol. 17: 129-135.
  15. Husson F, Bompas D, Kermasha S, Belin JM. 2001. Biogeneration of 1-octen-3-ol by lipoxygenase and hydroperoxide lyase activities of Agaricus bisporus. Process Biochem. 37: 177-182. https://doi.org/10.1016/S0032-9592(01)00201-1
  16. Ka KH, Hur TC, Park H, Kim HS, Bak WC. 2010. Mycelial growth and fairy-ring formation of Tricholoma matsutake from matsutake-infected pine trees. J. Korean. Microbiol. 38: 16-20.
  17. Kataoka R, Siddiqui ZA, Kikuchi J, Ando M, Sriwati R, Nozaki A, Futai K. 2012. Detecting nonculturable bacteria in the active mycorrhizal zone of the pine mushroom Tricholoma matsutake. J. Microbiol. 50: 199-206. https://doi.org/10.1007/s12275-012-1371-7
  18. Kato H, Matsuda F, Yamada R, Nagata K, Shirai T, Hasunuma T, et al. 2013. Cocktail $\delta$-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae. J. Biosci. Bioeng. 116: 333-336. https://doi.org/10.1016/j.jbiosc.2013.03.020
  19. Kim JY, Byeon SE, Lee YG, Lee JY, Park J, Hong EK, et al. 2008. Immunositimulatory activities of polysaccharides from liquid culture of pine-mushroom Tricholoma matsutake. J. Microbiol. Biotechnol. 18: 95-103.
  20. Kim SS, Lee JS, Cho JY, Kim YE, Hong EK. 2010. Effects of C/N ratio and trace elements on mycelial growth and exopolysaccharide production of Tricholoma matsutake. Biotechnol. Bioprocess Eng. 15: 293-298. https://doi.org/10.1007/s12257-008-0226-x
  21. Koo CD. 2005. Morphological characteristics of Tricholoma matsutake ectomycorrhiza. J. Korean Soc. For. Sci. 94: 16-20.
  22. Li M, Yang R, Zhang H, Wang S, Chen D, Lin S. 2019. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chem. 290: 32-39. https://doi.org/10.1016/j.foodchem.2019.03.124
  23. Lian C, Narimatsu M, Nara K, Hogetsu T. 2006. Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above-and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol. 171: 825-836. https://doi.org/10.1111/j.1469-8137.2006.01801.x
  24. Lynd LR, Van Zyl WH, McBride JE, Laser M. 2005. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16: 577-583. https://doi.org/10.1016/j.copbio.2005.08.009
  25. Matsui K, Sasahara S, Akakabe Y, Kajiwara T. 2003. Linoleic acid 10-hydroperoxide as an intermediate during formation of 1-octen-3-ol from linoleic acid in Lentinus decadetes. Biosci. Biotechnol. Biochem. 67: 2280-2282. https://doi.org/10.1271/bbb.67.2280
  26. Mau JL, Beelman Rob, Ziegler Grr. 1992. 1-Octen-3-ol in the cultivated mushroom, Agaricus bisporus. J. Food Sci. 57: 704-706. https://doi.org/10.1111/j.1365-2621.1992.tb08077.x
  27. Mosandl A, Heusinger G, Gessner M. 1986. Analytical and sensory differentiation of 1-octen-3-ol enantiomers. J. Agric. Food Chem. 34: 119-122. https://doi.org/10.1021/jf00067a033
  28. Min B, Yoon H, Park J, Oh YL, Kong WS, Kim JG, et al. 2020. Unusual genome expansion and transcription suppression in ectomycorrhizal Tricholoma matsutake by insertions of transposable elements. PLoS One 15: e0227923. https://doi.org/10.1371/journal.pone.0227923
  29. Minami H, K im J S, I kezawa N, T akemura T, K atayama T, Kumagai H, et al. 2008. Microbial production of plant benzylisoquinoline alkaloids. Proc. Natl. Acad. Sci. USA 105: 7393-7398. https://doi.org/10.1073/pnas.0802981105
  30. Murahashi S. 1938. The odor of matsutake (Armillaria matsutake Ito er Imai) II. Sci. Pap. I nsr. Phys. Chem. Res. 34: 155-172.
  31. Park H, Hur TC, Hong YP, Ka KH, Bak WC, Yeo UH. 2004. Occurrence of fruiting body of Tricholoma matsutake at a Pinus rigida stand in Korea. J. Korean For. Soc. 93: 401-108.
  32. Perez AG, Sanz C, Olias R, Olias JM. 1999. Lipoxygenase and hydroperoxide lyase activities in ripening strawberry fruits. J. Agric. Food Chem. 47: 249-253. https://doi.org/10.1021/jf9807519
  33. Sawahata T, Shimano S, Suzuki M. 2008. Tricholoma matsutake 1-Octen-3-ol and methyl cinnamate repel mycophagous Proisotoma minuta (Collembola: Insecta). Mycorrhiza 18: 111-114. https://doi.org/10.1007/s00572-007-0158-x
  34. Salas JJ, Sanchez C, Garcia-Gonzalez DL, Aparicio R. 2005. Impact of the suppression of lipoxygenase and hydroperoxide lyase o the quality of the green odor in green leaves. J. Agric. Food Chem. 53: 1648-1655. https://doi.org/10.1021/jf040331l
  35. Sikorski RS, Hieter P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27. https://doi.org/10.1093/genetics/122.1.19
  36. Tenaillon O, Skurnik D, Picard B, Denamur E. 2010. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 8: 207-217. https://doi.org/10.1038/nrmicro2298
  37. Tiwari A, Avashthi H, Jha R, Srivastava A, Kumar Garg V, Wasudev Ramteke P, et al. 2016. Insights using the molecular model of Lipoxygenase from Finger millet (Eleusine coracana (L.)). Bioinformation 12: 156-164. https://doi.org/10.6026/97320630012156
  38. Wurzenberger M, Grosch W. 1984. The formation of 1-octen-3-ol from the 10-hydroperoxide isomer of linoleic acid by a hydroperoxide lyase in mushrooms (Psalliota bispora). Biochim. Biophys. Acta (BBA)-Lipids and Lipid Metabolism 794: 25-30. https://doi.org/10.1016/0005-2760(84)90293-5

Cited by

  1. Chemoenzymatic Cascade Conversion of Linoleic Acid into a Secondary Fatty Alcohol Using a Combination of 13S-Lipoxygenase, Chemical Reduction, and a Photo-Activated Decarboxylase vol.9, pp.32, 2020, https://doi.org/10.1021/acssuschemeng.1c03136