References
- Qin J, Li R, Raes J, Burgdorf KS, Manichanh C, Nielsen T, et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59-65. https://doi.org/10.1038/nature08821
- Blander JM, Longman RS, Iliev ID, Sonnenberg GF, Artis D. 2017. Regulation of inflammation by microbiota interactions with the host. Nat. Immunol. 18: 851-860. https://doi.org/10.1038/ni.3780
- Koch BEV, Yang S, Lamers G, Stougaard J, Spaink HP. 2018. Intestinal microbiome adjusts the innate immune setpoint during colonization through negative regulation of MyD88. Nat. Commun. 9: 4099. https://doi.org/10.1038/s41467-018-06658-4
- Fava F, Rizzetto L, Tuohy KM. 2018. Gut microbiota and health: connecting actors across the metabolic system. Proc. Nutr. Soc. 18: 1-12. https://doi.org/10.1079/PNS19590003
- Nie P, Li Z, Wang Y, Zhang Y, Zhao M, Luo J, et al. 2019. Gut microbiome interventions in human health and diseases. Med. Res. Rev. 39:2286-2313. https://doi.org/10.1002/med.21584
- Richard ML, Sokol H. 2019. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat. Rev. Gastroenterol. Hepatol. 16: 331-345. https://doi.org/10.1038/s41575-019-0121-2
- Pang G. 2008. Food immunity, pp. 153-156. Science Press, Beijing.
- Sandes S, Alvim L, Silva B, Acurcio L, Santos C, Campos M, et al. 2017. Selection of new lactic acid bacteria strains bearing probiotic features from mucosal microbiota of healthy calves: Looking for immunobiotics through in vitro and in vivo approaches for immunoprophylaxis applications. Microbiol. Res. 200: 1-13. https://doi.org/10.1016/j.micres.2017.03.008
- Yap YA, Marino E. 2018. An insight into the intestinal web of mucosal immunity, microbiota, and diet in inflammation. Front. Immunol. 9: 2617. https://doi.org/10.3389/fimmu.2018.02617
- Ringel Y, Maharshak N, Ringel-Kulka T, Wolber EA, Sartor RB, Carroll IM, et al. 2015. High throughput sequencing reveals distinct microbial populations within the mucosal and luminal niches in healthy individuals. Gut Microbes 6: 173-181. https://doi.org/10.1080/19490976.2015.1044711
- Dong LN, Wang JP, Liu P, Yang YF, Feng J, Han Y. 2017. Faecal and mucosal microbiota in patients with functional gastrointestinal disorders: Correlation with toll-like receptor 2/toll-like receptor 4 expression. World J. Gastroenterol. 23: 6665-6673. https://doi.org/10.3748/wjg.v23.i36.6665
- Thomas AM, Jesus EC, Lopes A, Aguiar S Jr, Begnami MD, Rocha RM, et al. 2016. Tissue-associated bacterial alterations in rectal carcinoma patients revealed by 16S rRNA community profiling. Front. Cell Infect. Microbiol. 6: 179.
- Maharshak N, Ringel Y, Katibian D, Lundqvist A, Sartor RB, Carroll IM, et al. 2018. Fecal and mucosa-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Dig. Dis. Sci. 63: 1890-1899. https://doi.org/10.1007/s10620-018-5086-4
- Gu S, Chen D, Zhang JN, Lv X, Wang K, Duan LP, et al. 2013. Bacterial community mapping of the mouse gastrointestinal tract. PLoS One 8: e74957. https://doi.org/10.1371/journal.pone.0074957
- Wu Y, Zhong G, Wu M. 2015. Differential analysis of the bacterial community composition in mouse feces and intestinal contents. Acta Laboratorium Animalis Scientia Sinica 23: 249-255. (in Chinese).
- Zhao W, Wang Y, Liu S, Huang J, Zhai Z, He C, et al. 2015. The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS One. 10: e0117441. https://doi.org/10.1371/journal.pone.0117441
- He J, Yi L, Hai L, Ming L, Gao W, Ji R. 2018. Characterizing the bacterial microbiota in different gastrointestinal tract segments of the Bactrian camel. Sci. Rep. 8: 654. https://doi.org/10.1038/s41598-017-18298-7
- Perea K, Perz K, Olivo SK, Williams A, Lachman M, Ishaq SL, et al. 2017. Feed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestine-located microbiota. J. Anim. Sci. 95: 2585-2592. https://doi.org/10.2527/jas.2016.1222
- Wang J, Fan H, Han Y, Zhao J, Zhou Z. 2017. Characterization of the microbial communities along the gastrointestinal tract of sheep by 454 pyrosequencing analysis. Asian-Australas J. Anim. Sci. 30: 100-110. https://doi.org/10.5713/ajas.16.0166
- Ericsson AC, Johnson PJ, Lopes MA, Perry SC, Lanter HR. 2016. A microbiological map of the healthy equine gastrointestinal tract. PLoS One 11: e0166523. https://doi.org/10.1371/journal.pone.0166523
- Wu M, Li J, An Y, Li P, Xiong W, Li J, et al. 2019. Chitooligosaccharides prevents the development of colitisassociated colorectal cancer by modulating the intestinal microbiota and mycobiota. Front. Microbiol. 10: 2101. https://doi.org/10.3389/fmicb.2019.02101
- Mailhe M, Ricaboni D, Vitton V, Gonzalez JM, Bachar D, Dubourg G, et al. 2018. Repertoire of the gut microbiota from stomach to colon using culturomics and nextgeneration sequencing. BMC Microbiol. 18: 157. https://doi.org/10.1186/s12866-018-1304-7
- Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, et al. 2009. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 9: 123. https://doi.org/10.1186/1471-2180-9-123
- Wu M, Wu Y, Li J, Bao Y, Guo Y, Yang W. 2018. The dynamic changes of gut microbiota in Muc2 deficient mice. Int. J. Mol. Sci. 19: 2809. https://doi.org/10.3390/ijms19092809
- Drissi F, Raoult D, Merhej V. 2017. Metabolic role of lactobacilli in weight modification in humans and animals. Microb. Pathog. 106: 182-194. https://doi.org/10.1016/j.micpath.2016.03.006
- George F, Daniel C, Thomas M, Singer E, Guilbaud A, Tessier FJ, et al. 2018. Occurrence and dynamism of lactic acid bacteria in distinct ecological niches: a multifaceted functional health perspective. Front. Microbiol. 9: 2899. https://doi.org/10.3389/fmicb.2018.02899
- Cianci R, Franza L, Schinzari G, Rossi E, Ianiro G, Tortora G, et al. 2019. The interplay between immunity and microbiota at intestinal immunological niche: the case of cancer. Int. J. Mol. Sci. 20: 501. https://doi.org/10.3390/ijms20030501
- Heeney DD, Gareau MG, Marco ML. 2018. Intestinal Lactobacillus in health and disease, a driver or just along for the ride? Curr. Opin. Biotechnol. 49: 140-147. https://doi.org/10.1016/j.copbio.2017.08.004
- Pandiyan P, Bhaskaran N, Zou M, Schneider E, Jayaraman S, Huehn J. 2019. Microbiome dependent regulation of Tregs and Th17 cells in mucosa. Front. Immunol. 10: 426. https://doi.org/10.3389/fimmu.2019.00426
- Iacob S, Iacob DG, Luminos LM. 2019. Intestinal microbiota as a host defense mechanism to infectious threats. Front. Microbiol. 9: 3328. https://doi.org/10.3389/fmicb.2018.03328
- Borgstrom B, Dahlqvist A, Lundh G, Sjovall J. 1957. Studies of intestinal digestion and absorption in the human. J. Clin. Invest. 36: 1521-1536. https://doi.org/10.1172/JCI103549
- Krajmalnik-Brown R, Ilhan Z-E, Kang D-W, DiBaise JK. 2012. Effects of gut microbes on nutrient absorption and energy regulation. Nutr. Clin. Pract. 27: 201-214. https://doi.org/10.1177/0884533611436116
Cited by
- Curcumin β-D-Glucuronide Modulates an Autoimmune Model of Multiple Sclerosis with Altered Gut Microbiota in the Ileum and Feces vol.11, 2020, https://doi.org/10.3389/fcimb.2021.772962
- Characterization of the Luminal and Mucosa-Associated Microbiome along the Gastrointestinal Tract: Results from Surgically Treated Preterm Infants and a Murine Model vol.13, pp.3, 2021, https://doi.org/10.3390/nu13031030
- Time-restricted feeding induces Lactobacillus- and Akkermansia-specific functional changes in the rat fecal microbiota vol.7, pp.1, 2020, https://doi.org/10.1038/s41522-021-00256-x