References
- Wichmann R, Vasic-Racki D. 2005. Cofactor regeneration at the lab scale. Adv. Biochem. Eng Biotechnol. 92: 225-260.
- Wang Y, Tao F, Xu P. 2014. Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae. J. Biol. Chem. 289: 6080-6090. https://doi.org/10.1074/jbc.M113.525535
- Beauchamp J, Gross PG, Vieille C. 2014. Characterization of Thermotoga maritima glycerol dehydrogenase for the enzymatic production of dihydroxyacetone. Appl. Microbiol. Biotechnol. 98: 7039-7050. https://doi.org/10.1007/s00253-014-5658-y
- Hekmat D, Bauer R, Fricke J. 2003. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst. Eng. 26: 109-116. https://doi.org/10.1007/s00449-003-0338-9
- Weckbecker A, Groger H, Hummel W. 2010. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. Adv. Biochem. Eng. Biotechnol. 120: 195-242.
- Tao F, Tai C, Liu Z, Wang A, Wang Y, Li L, et al. 2012. Genome sequence of Klebsiella pneumoniae LZ, a potential platform strain for 1,3-propanediol production. J. Bacteriol. 194: 4457-4458. https://doi.org/10.1128/JB.00864-12
- Petrov K, Petrova P. 2009. High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl. Microbiol. Biotechnol. 84: 659-665. https://doi.org/10.1007/s00253-009-2004-x
- Oh BR, Seo JW, Heo SY, Hong WK, Luo LH, Joe MH, et al. 2011. Efficient production of ethanol from crude glycerol by a Klebsiella pneumoniae mutant strain. Bioresour. Technol. 102: 3918-3922. https://doi.org/10.1016/j.biortech.2010.12.007
- Liu H, Xu Y, Zheng Z, Liu D. 2010. 1,3-Propanediol and its copolymers: research, development and industrialization. Biotechnol. J. 5: 1137-1148. https://doi.org/10.1002/biot.201000140
- Wang L, Wang J, Shi H, Gu H, Zhang Y, Li X, et al. 2016. Characterization of glycerol dehydrogenase from Thermoanaerobacterium thermosaccharolyticum DSM 571 and GGG motif identification. J. Microbiol. Biotechnol. 26: 1077-1086. https://doi.org/10.4014/jmb.1512.12051
- Ruzheinikov SN, Burke J, Sedelnikova S, Baker PJ, Taylor R, Bullough PA, et al. 2001. Glycerol dehydrogenase. structure, specificity, and mechanism of a family III polyol dehydrogenase. Structure 9: 789-802. https://doi.org/10.1016/S0969-2126(01)00645-1
- Musille P, Ortlund E. 2014. Structure of glycerol dehydrogenase from Serratia. Acta Crystallogr. F Struct. Biol. Commun. 70: 166-172. https://doi.org/10.1107/S2053230X13034444
- Rossmann MG, Moras D, Olsen KW. 1974. Chemical and biological evolution of nucleotide-binding protein. Nature 250: 194-199. https://doi.org/10.1038/250194a0
- Lesley SA, Kuhn P, Godzik A, Deacon AM, Mathews I, Kreusch A, et al. 2002. Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc. Natl. Acad. Sci. USA 99: 11664-11669. https://doi.org/10.1073/pnas.142413399